Для любого выпуклого четырехугольника отрезки, соединяющие середины смежных сторон этого четырехугольника, образуют параллелограмм.
Для этого проведем одну из диагоналей: она разбивает четырехугольник на два треугольника, средние линии которых равны и параллельны, (как средние линии параллельные основанию, равные половине диагонали), и эти две средние линии являются противоположными сторонами искомого параллелограмма. Для второй диагонали - проделываем то же самое. В итоге, в равнобедренной трапеции диагонали равны, а значит равны и все стороны искомого параллелограмма, который поэтому и является ромбом.
Узнаем длины сторон треугольника через координаты концов отрезков.
Предположим, что ∆АВС - прямоугольный. Тогда его большая сторона АВ=5 может стать гипотенузой. По обратной теореме Пифагора АВ²=ВС²+АС². Подставим числа:
5²=4²+3²
25=16+9
25=25 - верное равенство.
Значит, ∆АВС - прямоугольный с прямым углом С.
Его площадь равна половине произведения катетов СА и СВ.
S=0.5*4*3=6.
S =1\2×_CD×CF=1/2×6×4=12 DF -Высота треугольника CDF
S=1/2×4×12=48 площадь треугольника CDE
Угол в 60 градусов нам дан для того чтобы мы доказали что CDE равносторони и CF=FE=4