Диагональ трапеции перпендикулярна к ее основаниям; тупой угол, прилежащий к большему основанию, равен 120, а боковая сторона, которая прилегает к нему, равна 7 см. Определить среднюю линию трапеции, если ее большая сторона равна 12 см.
Трапеция АВСД: диагональ АС⊥АД, АС⊥ВС, угол А=120°, АВ=7, СД=12 (большая сторона в ΔАСД)<А=<ВАС+<САД, откуда <ВАС=120-90=30°Из прямоугольного ΔАВС: ВС=АВ/2=7/2=3,5 (катет против угла в 30° равен половине гипотенузы)АС=АВ*сos 30=7*√3/2=3,5√3Из прямоугольного ΔАСД: АД²=СД²-АС²=144-36,75=107,25АД=0,5√429Средняя линия равна (ВС+АД)/2=(3,5+0,5√429)/2=1,75+0,25√429≈6,9Как то так :)
Решение на картинке ______
В Евклидовой геометрии, через две точки, расположенные на плоскости, можно провести только одну прямую.
Если геометрия не Евклидова (а есть и такие), то надо учитывать характер плоскости, на которых располагаются точки. К примеру, если точки лежат на сферической плоскости, то прямых будет не одна и тд
ABC - часть плоскости ABCD, значит угол между A₁DB и ABC равен углу между A₁DB и ABCD. Вообще, мы можем брать любую часть этой плоскости, какая нам будет удобна в нахождении угла. На рисунке я взял плоскость ADB. Треугольники ADB и A₁DB составляют двугранный угол, его величина будет равна величине его линейного угла - AHA₁. AHA₁ и есть искомый угол. Дальше думаю, сами разберетесь :)
Можно еще так решить:
Треугольник ADB - ортогональная проекция треугольника A¹DB на плоскость ABCD.
Находим площади этих треугольников и подставляем в формулу:
S' = S * cos α, где S' - площадь проекции, S - площадь проецируемой плоскости, α - угол между ними.