Обозначим треугольник АВС(смотри рисунок). Проведём высоту СМ и радиусы вписанного круга ОР, ОF, ОN. По соотношению катетов определяем, что этот треугольник "египетский", отсюда АВ=25. Найдём R=5, и высоту. КMNO-прямоугольник, то есть ОN=KM. Далее-по теореме Пифагора. Ответ ОК=1.
Sabc= 1/2*ab
S= 1/2*7,4*6,4=23,68 см^2
Угол 2 равен углу 3 ( накрест лежащие углы )
угол 3 равен 77 градусов
Прямоугольник здесь дан как фигура вспомогательная, указывающая на то, что трапеция АВСD - прямоугольная, т.к. имеет с прямоугольником общую сторону АВ.
ВN- биссектриса, углы АВN и ТВN - равны, а ТВN и АNВ - равны как накрестлежащие, и потому треугольник ВАН- равнобедренный.
Сторона АN=АВ=8
S (ABT)=AB*BT:2=6*8:2=24
<em> В трапеции образованные диагоналями треугольники при боковых сторонах - равновелики</em>, <em>при основаниях - подобны.</em>
S (АВР)=S (PTN)
-------
Рассмотрим треугольник АВТ. Он египетский (отношение катетов 3:4), значит, AT=10 ( можно проверить по т.Пифагора)
Высоту ВН найдем из площади треугольника АВТ:
S (ABT)=BH*AT:2
ВН= 2 S ABT:AT=48:10=4,8
------
Рассмотрим треугольники ВРТ и АРN.
Они подобны по первому признаку подобия - имеют равные вертикальные углы при Р и равные накрестлежащие углы при секущих ВN и АТ. Коэффициент подобия равен ВТ:АN= 6:8=3/4
АТ=ТР+РА= 3+4=7 частей
1 часть =10/7
АР=4 части=АТ*4/7
АР=10:7*4
S ABP=AP*BH:2= (40/7)*4,8:2=96:7=13 ⁵/₇<span>
В трапеции образованные диагоналями треугольники при боковых сторонах - равновелики
<span>S PTN=S ABP=13<em> </em></span>⁵/₇</span>