Если трапеция описана около окружности, то суммы ее противоположных сторон равны.
(Это свойство любого четырехугольника, описаного около окружности)
Так как трапеция равнобедренная, то вторая боковая сторона также равна 14 см, а их сумма: 14 + 14 = 28 см.
Исходя их указанного свойства, сумма оснований трапеции также равна 28 см, тогда периметр равен: Р = 28 + 28 = 56 см.
Ответ: 56 см
ΔABC прямоугольный: ∠BAC=90°
AF⊥BC; BF = 1; FC = 4
Высота прямоугольного треугольника, проведенная из вершины прямого угла, делит его на два подобных, которые подобны ему самому.
ΔABF ~ ΔCAF ⇒ h² = BF*CF = 1*4 = 4 ⇒ h = √4 = 2
BC = BF + CF = 5
Площадь треугольника
Ответ: площадь треугольника равна 5
Так как высота - ещё и медиана, а OB = 6, то OC = 3, т. е. x = 3. Отсюда для AC: x - 3 = 0
У правильного треугольника все углы по 60°. Коэффициент перед x равен тангенсу угла O - tg(60°) = √3. Так как прямая проходит через центр, свободный член равен нулю. Отсюда для OA: y = x√3 ⇒ -√3 * x + y = 0
OB лежит на Ox, поэтому для OB: y = 0
------------------------------------------------------------