Лично мне достаточно двух линий.
Треугольники: АВС, ВСD, ACD, ABD, BOC, COD, AOD, BOA.
Удачи :)
1) Дано:
ABC - треугольник.
CD - Высота - 15см
AB = 22
Найти
S
Решение:
S = 1/2AB*CD
S = 1/2 22*15:2 = 165.
Ответ: S = 165.
2) ACB - прям.треугольник.
АС = 9
СВ = 4
Найти:
S
Решение:
Формула: 1/2AC*CB => S = 9*4:2 = 16
Ответ: S = 16
3) Дано:
АВС - равнобедренный треугольник.
AC = 8
угол B = 60градусов
Решение:
1.Проведём высоту BH => BH является медианой и биссектрисой.
AH = HC = 4.
Угол HBC = 30. => HC = 1/2 BC. Уголс с = 60.
BC = AB = 8.
Найдём BH по теореме пифагора.
С2 = A2 + B2. (в квадрате)
Чтобы найти неизвестный катет надо из квадрата гипотенузы вычесть известный квадрат катета = > 82 - 42 = 64 - 16 = 48
Теперь найдём площадь треуг.АВС
S = 1/2 AC*BH = 8*48 = 384
№1
"Дано" и "Найти" напишете сами, надеюсь, а решение вот:
1) Треугольник АВС - равнобедренный, т.к. АВ=ВС - по условию, тогда углы при основании равны, т.е. ∠ВАС=∠ВСА=30°;
2)∠ВСЕ и ∠ВСА смежные, тогда ∠ВСЕ=180-30=150°;
3)∠DСЕ=1/5∠ВСЕ=150/5=30°, следовательно, ∠DСЕ и ∠ВСЕ-соответственные углы при прямых AB,CD и секущей АЕ, тогда AB||CD,что и требовалось доказать.
№2
Здесь вообще все просто. Строим то, что дано в условии, обозначаем равные отрезки, соединяем точки так, чтобы получился четырехугольник. Видим, что данные отрезки(BD,AC) являются диагоналями и делятся точкой пересечения пополам, а это - признак параллелограмма, у которого противолежащие стороны попарно параллельны, т.е. BC||AD-как стороны параллелограмма(по его определению).
Докажем что треугольник ABD - равнобедренный
Биссектрисса делит угол пополам значит <BAD=<DAC
<DAC=<DBA - как накрест лежащие
значит и <BAD=<BDA
треугольник ABD -ранобедренный
<BAD=(180-32):2=74
<A = 74+74=148