1. Рассмотрим прямоугольные ΔABD и ΔADC
1) ∠BAD = ∠DAC
2) DA - общая
Следовательно ΔABD = ΔADC по гипотенузе и острому углу
2. Отрезок проведённой к AC из точки B назовём BH.
∠AHB = ∠BHC
∠AHB и ∠BHC - смежные ⇒ ∠AHB + ∠BHC = 180°
∠AHB = ∠BHC = 180°/2 = 90° ⇒ эти углы прямые ⇒ ΔAHB и ΔBHC - прямоугольные.
Рассмотрим ΔAHB и ΔBHC
1) BH - общая
2) ∠BAH = ∠BCH
Следовательно ΔAHB = ΔBHC по катету и острому углу.
3. Рассмотрим ΔBEA и ΔECD
1) AE = ED
2) ∠BEA = ∠CED - вертикальные углы
Следовательно ΔBEA = ΔECD по гипотенузе и острому углу
4. Напротив угла в 30° лежит катет в два раза меньше гипотенузы, то есть 2BC = AB
AB = 2*4 = 8
5. ∠CAB = 90° - 60° = 30°
Напротив угла в 30° лежит катет в два раза меньше гипотенузы, то есть 2BC = AB
2BC = 10
BC = 5
6. ∠CAB = 90° - 45° = 45°
∠CAB = ∠ABC ⇒ ΔABC - равнобедренный ⇒ AC = CB = 6
Сумма внутренних углов любого многоугольника равна 180(n-2), где n - число сторон. В случае двенадцатиугольника n=12. Все углы равны. Имеем:
180(12-2):12 = 180*10:12 = 150. Все углы по 150 градусов.
Дано: треуг. MKN, А принадлежит МК, В принадлежит MN. Треуг АВК равнобедренный, АК=АВ. КВ-биссектриса АКN. Доказать, что АВ II KN.Доказательство:<span>Так как КВ-биссектриса MKN, то угол МКВ=BKN, и так как треуг. КАВ равнобедренный с основанием КВ, то углы при основании равны АКВ=АВК. Отсюда следует, что АВК=BKN, а эти углы являются накрест лежащими при прямых АВ и KN и секущей ВК. Если накрест лежащие углы равны, то прямые АВ и КN параллельны. Доказано.</span>
15*5=75(ч)........ ......nnnn
Смежный угол=180 градусом
180-105=75 градусов (2 угол)
1 угол 55 градусов
значит 3 угол= 180- 75-55= 105-55=50 градусов