8xa^4xb^2-12xa^3xb^2+12xa^2xb^2-4xaxb^2
Поскольку даны координаты только 2-х вершин, задача имеет два решения, так как квадрат может быть построен симметрично относительно стороны АВ..
Найдем длину стороны квадрата.
Длина вектора, заданного координатами, равна корню квадратному из суммы квадратов его координат.Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат КОНЦА отнять соответствующие координаты НАЧАЛА.Значит длина стороны квадрата равна √[(Хb-Xa)²+(Yb-Ya)²] =√29.
Мы знаем, что диагонали квадрата равны произведению его стороны на √2, то есть = √58 и в точке деления делится пополам. Итак, мы имеем два уравнения: (1)√[(Хd-Xa)²+(Yd-Ya)²] =√29 - для длины |АВ| квадрата и (2)√[(Хd+Xb)²+(Yd+Yb)²] =√58 для длины |ВD|его диагонали. Решим систему из двух уравнений и найдем координаты вершины D(Xd;Yd).
(1) √[(Хd-Xa)²+(Yd-Ya)²] =√29 или (Хd+2)²+(Yd-1)²=29 или Хd²+4Хd+Yd²-2Yd=24.
(2) √[(Хd-Xb)²+(Yd+Yb)²] =√58 или (Хd-3)²+(Yd-3)²=58 или Хd²-6Хd+Yd²-6Yd=40.
Из (1) вычтем (2):10Xd+4Yd=-16. Yd=-(5Xd+8)/2.
Подставляем это значение в (1):
4Хd²+16Xd+25Xd²+80Xd+64+20Xd+32=96 или 29Хd²+116Xd=0 или Хd²+4Xd=0. Отсюда Xd1=0 и Xd2=-4. Соответственно Yd1=-4, а Yd2=6.
Итак, мы получили координаты вершины D: D1(0;-4) и D2(-4;6).
Мы помним, что диагонали квадрата делятся в точке пересечения пополам. Найдем координаты середины диагонали BD. Координаты этой точки равны половине суммы координат начала и конца отрезка (вектора) BD: (0+3)/2=1,5 и (-4+3)/2= -0,5.
Итак, имеем точку пересечения диагоналей: О1(1,5;-0,5) и аналогично О2(-0,5;4,5).
Зная эти координаты, найдем координаты точки С (так как нам известны координаты начала и середины отрезка АС.
(Хс+Xa)/2=Xo и (Yc+Ya)/2=Yo. Отсюда имеем: Хс1=5 и Yc1=-2.
Xc2=1, Yc2=8.
Ответ:координаты вершин квадрата: С1(5;-2), D1(0;-4) и C2(1;8),D2(-4;6).
1. пусть одна часть в отношении равна х, тогда АС=2х, ВС=3х, АС=2х+3х=5х.
5х=15,
х=3,
АС=2х=6 м.
ВС=3х=9 м.
2. Пусть ∠СОВ=х, тогда ∠АОС=х-40°.
∠АОС+∠СОВ=х-40°+х=80°,
2х=120°,
х=60°,
∠СОВ=60°, ∠АОС=60-40=20° - это ответ.
3. Пусть один угол равен х, тогда другой 5х.
х+5х=180°,
6х=180°,
х=30°, 5х=150°.
Ответ: смежные углы равны 30° и 150°.
1)Рассмотрим прямоугольный треугольник:
найдём значение образующей через косинус.
cos30°=l/12
cos30°=√3\2
следовательно l равен 6√3
ответ:6√3 см
Площадь круга описывающий правильный шестиугольник равна S=πR²,
площадь вписанного круга равна s=πr².
R- описанной окружности равен стороне вписанного шестиугольника: R=a, чтобы вычислить радиус вписанной окружности, соедините две смежные вершины шестиугольника с центром окружности. Получили равносторонний треугольник , в котором высота, опущенная из вершины, являющейся центром окружностей, на сторону шестиугольника является радиусом вписанной окружности.Вычислим этот радиус.
r²=a²-(a/2)²= a²-a²/4=a²·3/4=( a√3)/2 или r=a·sin60=(a·√3)/2
площадь кольца равна разности площади круга описанной окружности и площади круга вписанной окружности: πa²-π·((a√3)/2)²= πa²-π·3a²/4=π(a²-3a²/4)=πa²/4
ответ:πa²/4