3 и 7
6 и 5
3 и 6
7 и 5
1 и 4
2 и 9
1 и 2
4 и 9 :)
Рассмотрим <u>ромб АМСН </u>на рисунке, данном во вложении.
Его вершины А и С лежат на середине сторон квадрата.
Две другие вершины М и Н лежат на диагонали ВД квадрата.
МН - меньшая диагональ ромба- по условию равна 1/6 диагонали ВД квадрата со стороной 21 ( Отрезок <u>МН</u>, соединяющий вершины, расположенные на диагонали квадрата, - и <u>есть меньшая диагональ ромба</u>).
По формуле диагональ d квадрата равна d=а√2 =>
d=21√2,
следовательно, расстояние
МН=d:6=(21√2):6 см
АС - диагональ квадрата АВСО, сторона которого равна половине стороны исходного квадрата.
АВ=21:2=10,5см
АС=10,5√2 ( опять же по формуле диагонали квадрата<u> d=а√2</u>)
<em>Площадь ромба равна половине произведения его диагоналей</em>.
S АМСН=АС*МН:2={(10,5√2)*(21√2):6}:2=10,5*2*21:12=21*21:12см²
<u>Закрашенная часть состоит из 4-х таких ромбов. </u>
Её площадь равна
S=4*21*21:12=4*3*7*21:12=7*21=147см²
<span>Сумма цифр числа 147=12. </span>
1) cos A = Корень из ( 1- sin^2 A) = 1.5
2) 2х+9х+34х = 180
45х=180
х=4
2*4=8
3)А( 0; -25)