Пользуемся тем, что отношение площадей треугольников с общей высотой равно отношению оснований. Поэтому
Т.к. S(ABM)/S(AMD)=BM/MD=3/2, то S(ABM)=3x, S(AMD)=2x.
Т.к. S(AMD)/S(DMC)=AD/DC=1, то S(AMD)=S(DMC)=2x.
Обозначим S(MBE)=y, S(MEC)=z.
S(ABE)=S(ABM)+S(MBE)=3x+y
S(ACE)=S(AMD)+S(DMC)+S(MEC)=2x+2x+z=4x+z
Т.к. S(ABE)/S(ACE)=BE/EC=S(MBE)/S(MEC), то получаем
(3x+y)/(4x+z)=y/z, откуда 3xz+yz=4xy+yz, т.е. 3z=4y. Итак,
BE/EC=S(MBE)/S(MEC)=y/z=3/4.
По условию задачи в сновании находится прямоугольный треугольник, (по квадратам сторон: 6²+8² = 10²).
Так как грани наклонены под равным углом к основанию, то проекции рёбер на основание находятся на биссектрисах треугольника основания. Ось пирамиды находится на пересечении биссектрис.
Отсюда вывод: высота пирамиды равна радиусу вписанной в треугольник окружности. Радиус вписанной в прямоугольный треугольник окружности равен:
r = (a+b-c) / 2 = (6+8-10) / 2 = 2. Тогда и высота Н = 2. а апофема - 2√2.
Площадь боковой поверхности пирамиды равна:
Sбок = (1/2)Р*r = (1/2)*(6+8+10)*2√2 = 24√2.
Площадь основания So = (1/2)6*8 = 24.
Площадь полнойповерхности пирамиды равна 24√2 + 24 = 24(1+√2) = <span><span>57.94113.</span></span>
AB^2-BE^2=AC^2-EC^2
BE^2=AB^2-AC^2+EC^2=26^2-30^2+15^2=1
BE=1
-tg(2Рi-60)= tg(60)=<span>корень из 3</span>
Рассмотрим ΔADB и ΔADC. 1. AD-общая сторона.2. AB=AC - по условию.3. ∠BAD=∠CAD - по условию. Из трёх равенств следует, что ΔADB=ΔADC по 1-вому признаку равенства треугольников.⇒BD=CD=6,5AD-BD=4,5⇒AD больше BD на 4,5 см.Ответ:4,5см.