Решение в прикрепленном файле
Ответ: 48,5
сначала считаем площадь большого паралелограмма, прибавляем площадь треугольника слева и отнимаем площадь внутреннего паралелограмма
<em>Если три стороны одного треугольника соответственно пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.</em>
Дано: ΔАВС, ΔА₁В₁С₁,
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
На стороне АС треугольника АВС отложим СА₂ = С₁А₁ и проведем А₂В₂║АВ.
Так как прямая, параллельная стороне треугольника, отсекает треугольник, подобный данному, то
<u>ΔАВС подобен ΔА₂В₂С</u> , значит их стороны пропорциональны:
, а так как А₂С = А₁С₁, то получаем
,
По условию:
.
Из этих двух равенств следует, что
А₂В₂ = А₁В₁ и В₂С = В₁С₁.
Тогда ΔА₁В₁С₁ = ΔА₂В₂С по трем сторонам.
Значит,
ΔАВС подобен ΔА₁В₁С₁.