1) 1 и 5
2) 1 и -5
3) -1 и 19
4) -1
На счет 5 и 6 не знаю
<span>х^2 - 3x + 2 < 0
</span>(x-1)(x-2)<span>< 0
x (1;2)
</span><span>ax^2 - (3a + 1)x + 3 < 0
</span><span>
D=(3a+1)^2-12a=9a^2+6a+1-12a=9a^2-6a+1.
что бы получились 2 корня </span>9a^2-6a+1 должно быть >0
9a^2-6a+1>0/
(3a-1)^2 - подный квадрат, всегда положителен, и равен нулю когда а =1/3.
тогда что бы корней было 2 а должна быть не равна 1/3.
корни
х12= ((3а+1)+-(3а-1))/2а
x1=3. x2=1/a.
решение уравнения 1 (1;2)
должно удовлетворять и решению 2 уравнения, тогда верхняя граница у второго уравнения х=3, нижняя - х=1/а,
0<1/а <3
1/3<a<+бесконечность
ответ в круглых скобках. т к 1/3 не входит в одз а
{x=-1/2
{((-1/2)-4)/((-1/2)-5)=(-9/2)/(-11/2)=9/11 >0 - верное неравенство
О т в е т. х=-1/2