Площадь треугольника равна половине произведения высоты на основание
поэтому удобнее брать один катет как основание и второй как высоту к этому основанию, поэтому надо найти их длины
Пусть длина меньшего катета равна k, тогда длина второго равна k + 2
Применим теорему Пифагора : квадрат гипотенузы равен сумме квадратов катетов
10² = x² + (x +2)² решаем уравнения раскрыв скобки
100 = x² + x² + 4x + 4
2*x² + 4*x - 96 = 0 нормализуем (делим на коэффициент при x²)
x² + 2*x - 48 = 0 по теореме Виета находим корни 6 и -8
(произведение = 48, а сумма корней = -2)
т.к. длина положительна, то меньший катет равен 6, а второй равен 8
Считаем площадь S = ¹/₂ * 6 * 8 = 24
P.S. прочитай теорему Пифагора и теорему Виета
10-(х^2+2ху+у^2)=10-(х+у)^2=10-9^2=-71
19-9×(х^2+2ху+у^2)=19-9×(х+у)^2=19-9×9^2=19-729=-710