<span>Помогите пожалуйста )))1)высота конуса h равна 4 , образующая l -5 .найдите обьем конуса</span>
<u><em>Теорема 1.</em></u><em> Шар можно вписать в прямую призму в том и только в том случае, если в основание призмы можно вписать окружность, а высота призмы равна диаметру этой окружности.</em><span> </span>
<u><em>Следствие 1.</em></u><span> Центр шара, вписанного в прямую призму, лежит в середине высоты призмы, проходящей через центр окружности, вписанной в основание. </span>
<u><em>Следствие 2</em></u><span>. Шар, в частности, можно вписать в прямые: треугольную, правильную, четырехугольную (у которой суммы противоположных сторон основания равны между собой) при условии Н = 2r, где Н – высота призмы, r – радиус круга, вписанного в основание. </span>
<span>--------</span>
<u><em>Вывод: радиус сферы, вписанной в прямую призму высота которой равна h, равен половине этой высоты.</em></u>
У правильного треугольника все стороны равны и каждый из углов равен 60 градусов. Центр вписанной в треугольник окружности лежит в точке пересечения его биссектрисс. Обозначим треугольник АВС, проведём биссектриссу угла А - АЕ и биссектриссу угла В - ВД. Они пересекутся в точке О. Биссектриссы правильного треугольника являются его высотами и медианами, значит ОД - медиана и высота и треугольник АОД - прямоугольный, сторона которого АД=1/2АС=17√3/2. Угол ОАД=60:2=30 градусов, а катет прямоугольного треугольника, лежащий против угла в 30 градусов равен половине гипотенузы, т.е. ОД (это радиус вписанной окружности) = 1/2АО. Обозначим ОД - Х, тогда АО=2Х. По теореме Пифагора:
АО²=ОД²+АД² (2Х)²=Х²+(17√3/2)² 4Х²=Х²+867/4 3Х²=867/4 Х²=289/4 Х=17/2=8,5. Значит радиус вписанной окружности =8,5.
В равнобедренном треугольнике высота является и биссектриссой и высотой
Треугольник АВD- равнобедренный ( по условию).В равнобедренном треугольнике углы при основании равны, значит угол D=углуА =80. Развёрнутый угол D=180, в треугольнике BDC угол D=180-80=100, а т.к.DE биссектриса, то угол ВDE=50