Правильный тетраэдр - это правильная треугольная пирамида у которой все грани являются равносторонними треугольниками. Искомый угол - это угол между высотами двух соседних граней (по определению), то есть это угол при вершине равнобедренного треугольника с боковыми сторонами - высотами граней и основанием - стороной основания тетраэдра. Высота правильного треугольника равна h=(√3/2)*a, где а - сторона треугольника. Тогда по теореме косинусов: Cosα = (AH+BH²-AB²)/(2*AH*BH) или в нашем случае
Cosα =(1/2)*а²/((1/2)*3а²) = 1/3.
Ответ: α = arccos(1/3) ≈ 70,5°.
1.Т.к DB перпендикулярно плоскости (Abc), то оно перпендикулярно всем прямым лежащим в этой плоскости,значит DB перпендикулярно AC, AM перпендикулярно BM, значит АС перпендикулярно плоскости (BDM)
2.По теорема известно, что если 2 пересекающиеся прямые плоскости перпендикулярны какой-либо прямой, то все прямые этой плоскости(и сама плоскость) перпендикулярно прямой.
3.Все по той же теореме, что и во 2 задаче.
4.тоже самое, что и в 1 задаче
5.Опять по теореме из 3 задачи
6.из 1 задачи
S(кр)= R^2*П, S=16П см^2
R^2= S/П
R^2= 16
R=4
Сторона квадрата вдвое больше его радиуса вписанной окружности.
a=4*2=8
S=a^2 S= 8^2= 64 см^2