A - B = 80
<span>внешний угол при вершине А больше внешнего угла при вершине B в 2 раза. Внешний угол - это <span>разность между 180° и внутренним углом. То есть внешний угол при вешине А равен 180°- A, при вершине B 180°- B. Т.к. При вершине А внешний угол больше в 2 раза, то</span></span>
<span><span></span></span>
Получаем систему уравнений:
Тогда угол C равен 180°- 100°- 20° = 60°
Внешние углы равны:
при вершине А 180°- 20° = 160°;
при вершине B 180°- 100°= 80°;
при вершине C 180°- 60° = 120°.
Наибольшая разность - это разность между максимальным значением и минимальным, т.е. 160°- 80° = 80°, разность между внешними углами при А и при С.
Вроде в разв угле 180 градусов)
<u>Основанием высоты</u> правильной треугольной пирамиды <u>является </u>точка пересечения высот (медиан, биссектрис) основания, т.е. <u>центр описанной и вписанной окружностей</u>.
Все ребра и все стороны правильной пирамиды равны.
Обозначим вершины треугольника основания АВС,
высоту пирамиды МО.
СН - высота основания
Соединим НМС в треугольник.
Угол МНО=30°
МС=√13
Пусть сторона основания равна а.
Основание - правильный треугольник, поэтому
СН=а*sin(60°)=а√3):2
ОН=а√3):6 ( радиусу вписанной окружности)
СО=а√3):3 (радиусу описанной окружности)
Высота пирамиды
МО=НО:ctg(30°)=a/6.
Из треугольника МОС по т.Пифагора найдем величину а:
<span>МО²+ОС²=МС²</span><span>(
а/6)²+ (а√3):3)²=13
</span>а²=36
а=6
Высота боковой грани
МН =МО : sin(30°)=2 MO
<span>МО=a/6=1</span>
Отсюда высота боковой грани равна 2
S бок=3*6*2:2=
18 единиц площади
---
[email protected]<span>
</span>
1. А
так как методом исключения. на рисунке б одинаковые углы, треугольники подобны. на рисунке в стороны относятся как 3 к 2, на рисунке г один одинаковый угол, отношение сторон = 0,75
2. Г
косинус = отношение прилежащего катета к гипотенузе
от есть 5/гипотенуза
по теореме пифагора гипотенуза=√41
то есть ответ 5/√41
3. А
тангенс = отношение противолежащего к прилежащему
то есть 4/5