1) log3-x_(9-x^2) ≤ 1;
log3-x_((3-x)(3+x)) ≤ 1;
log3-x_(3-x) + log3-x_(3+x) ≤ 1;
1+ log3-x_(3+x) ≤ 1;
log3-x_(3+x) ≤ 0;
(3-x - 1)*(3+x - 1) ≤ 0;
(2-x)*(x+2) ≤ 0; /*(-1);
(x-2)(x+2) ≥ 0;
+ - +
_____(-2)_____(2)______x
x∈( - бесконечность; -2] U [2; + бесконечность).
Теперь сравним с одз.
Одз
3-x >0; ⇒ x < 3;
3 +x>0; x>-3; ⇒ (-3; 2) ∨(2;3).
3 - x≠1; x ≠ 2.
Пересечем решения с ОДЗ и получим ответ для 1-го неравенства
х ∈ (-3; - 2) ∨ (2;3).
5*25^-x - 126 * 5^-x + 25 ≤ 0
умножим лево и право на 25^x (имеем право - это положительное число, ничего в неравенстве не изменится)
и вспомним что 25^x = (5^x)^2
5 - 126*5^x + 25*25^x ≤ 0
5^x = t
5 - 126t + 25t^2 ≤ 0
D=126^2 - 4*5*25 = 15876 - 500 = 124^2
t12= (126 +-124)/50 = 1/25 5
(t - 1/5)(t - 5) ≤ 0
метод интервалов
+++++++[1/25] ----------- [5] +++++++++
5^x = t
t>=1/25 5^x>=1/25 5^x≥ 5^-2 x>=-2
t<=5 5^x <=5 x<=1
x∈[-2 1]
смотрим второе
log(x+1)^2 x^2 ≤ 1
ОДЗ x^2 ≠ 0 x≠0 (x^2 > 0 во всех остальных случаях)
(x+1)^2 ≠ 0 x≠-1
(x+1)^2≠ 1 x≠0 x≠-2
применяем метод рационализации
log(f(x)) g(x) ≤ log(f(x)) h(x) ⇔ (f(x)-1)(g(x) - h(x)) ≤ 0 при выполнении ОДЗ
log(x+1)^2 x^2 ≤ log(x+1)^2 (x+1)^2
((x+1)^2 - 1)(x^2 - (x+1)^2 ) ≤ 0
(x+1 -1 )(x+1 +1)(x-x-1)(x+x+1) ≤ 0
x*(x+2)*(-1)*(2x+1) ≤ 0
x(x+2)(2x+1)≥0
метод интервалов
-----------(-2) +++++++ [-1/2] ---------- (0) ++++++++++
x∈ (-2 -1) U (-1 -1/2] U (0 +∞) пересекаем с первым ответом x∈[-2 1]
ответ x∈(-2 -1) U (-1 -1/2] U (0 1]
5(x+3)=2x-3
5x+15=2x-3
5x-2x=-3-15
3x=-18:3
x=-6