Площадь ромба вычисляется по формуле половина произведения диагоналей. Пусть одна диагональ 5x, другая 4x. x это одна часть. тогда 5х*4х/2=40, то есть
10*x^2=40, откуда x=2. следовательно одна диагональ 20, другая 16.
Ответ. 16м и 20см
Ромб АВСД, АС=6, ВД=8, диагонали ромба при пересечении делятся пополам и пересекаются под углом 90, диагонали делят ромб на 4 равных прямоугольных треугольника, АВ=ВС=СД=АД=корень(АО в квадрате+ВО в квадрате)=корень(9+16)=5, проводим из точки О перпендикуляры на АВ - ОМ, на ВС-ОН, на СД-ОТ, на АД-ОЕ, соединяем их с точкой К, если треугольники в роьбе равны , то и высоты тоже равны, ОМ=ОН=ОС=ОЕ, треугольникОМК=ОНК=ОТК=ОЕК как прямоугольные треугольники по двум катетам, ОК-общий , вторые см. ранеее, значит МК=НК=ТК=ЕК, АМ =АО в квадрате/АВ=9/5, ВМ=ВО в квадрате/АВ=16/5, ОМ=корень(АМ*ВМ)=корень(9/5 * 16/5)=12/5=2,4, треугольникОМК прямоугольный, МК=корень(ОМ в квадрате+ОК в квадрате)=корень(5,76+20,25)=5,1
Получается углы при основании будут равны по 45 градусов,внешние углы будут равны 135
1) уг В=180-(45+15)=120*
2) средняя по величине сторона лежит против среднего по величине угла, т.е. напротив угла в 45*, значит это ВС.
3) по т Синусов, получаем:
10√6 / sin120 = BC / sin 45
BC = 10√6 * sin 45 / sin120
BC = 10√6 * √2/2 * 2/√3
ВС=20 см (Б)
По т. Пифагора AC=5
cosBAC=AB/AC=4/5=0.8