∠АСВ=∠СВD=25° (накрест лежащие)
Т.к. ВС бис-са, то ∠СВD=∠CBA=25°
∠ВАС=180°-∠АСВ-∠АВС (180° сумма углов треугольника)
∠ВАС=180°-25°-25°=130°
S=0,5 * (AB+DC) * AH
(AB + DC) = 12 cm
AH=4 cm т.к. АН-высота и в треугольнике АНD угол АDН =30 градусам,АD=8 см (в прямоугольном треугольнике гипотенуза равна удвоенному катету, если напротив этого катета есть угол равный 30 градусам)
значит площадь трапеции равна произведению чисел 0,5; 12 и 4
S=24 cm
Синус О - это аб \ оа
Подставляем значения
0.3 = 6 \ оа
оа = 6 \ 0 3 = 20 гипотенуза оа = 20
<em>№4 Боковые ребра треугольной пирамиды взаимно перпендикулярны и равны 8, 6, и 6. <u>Найдите радиус</u> описанной около этой пирамиды сферы.</em>
Пусть данная пирамида МАВС. (см. рисунок)
Из условия следует, что боковые грани данной пирамиды - прямоугольные треугольники.
∆ МАС=∆ МВС по равным катетам. ⇒
их гипотенузы равны: АВ=АС.
По т. Пифагора АВ=10.
∆ МСВ - равнобедренный прямоугольный с катетами, равными 6. ⇒
СВ=6√2 .
Пирамида вписанная, все ее точки лежат на поверхности сферы.
Основание пирамиды лежит в плоскости, пересекающей сферу по окружности с радиусом, равным радиусу описанной вокруг АВС окружности. Для радиуса описанной окружности равнобедренного треугольника
<em>R=a² :√(4a² -b² )</em>
R=100:√328=50:√82
Основание высоты МО пирамиды лежит в центре описанной вокруг АВС окружности.
МО из ∆ АОМ по т.Пифагора:
МО =√(АМ² -АО²) =√(64- (50:√82)²)= √2748/82)
Для осевого сечения сферы диаметр АТ сечения и диаметр МК сферы - пересекающиеся хорды.
<em>Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.</em> ⇒ АО*ОТ=МО*ОК.
ОК=АО²:МО
ОК=(50:√82)²:√(2748/82)=2500:√225336=5,267
Диаметр сферы МК=МО+ОК=√2748/82)+5,267=5,789+ 5,267= ≈11,056
<span>R =D:2= </span>≈ 5,528 (ед. длины)
Проведем от точки В к плоскости α перпендикуляр ( назовем эту точку О)
у нас получился прямоугольный треугольник АВ с гипотенузой АВ=12 и углом =60°
мы можем найти угол АВО = 90-60=30°(по св. прям. тр.)
По другому свойству мы можем найти АО( катет, напротив которого угол в 30°)
АО равняется половине гипотенузе, а значит 6 см
По теореме Пифагора находим расстояние от точки В до плоскости (или ВО):
ВО²=АВ²-АО²
ВО²=144-36=108
ВО=
Ответ: