Чертеж странный, такой будет понятнее...(Моя картинка)
1)Катет лежащий напротив угла в 30° равен половине гипотенузы...то есть DC = 1/2*BC = 3.5
2)Т.к Угол АDB прямой , а Угол АBD = 45°, то ABD = BAD = 45° , значит треугольник ABD равнобедренный, значит углы при основании равно, а значит и стороны равны, значит BD = AD = 5cм
3) АС = AD + DC = 5 + 3.5 = 8.5 см
Если действительно надо найти ВЕ, то зная, что АЕ - медиана, которая по определению делит сторону ВС пополам, имеем:ВЕ=ЕС=28,5см. Это ответ.
Но для чего нам даны стороны АВ и АС?
Скорее всего, в задаче требовалось найти медиану АЕ.
Тогда, зная, что медиана делит треугольник на два РАВНОВЕЛИКИХ, мы можем найти медиану АЕ через равенство площадей треугольников АВЕ и АСЕ, которые находим по формуле Герона: S=√[p(p-a)(p-b)(p-c)].
В нашем случае, для треугольника АВЕ полупериметр равен р=(78,2+АЕ)/2.
Для треугольника АСЕ полупериметр равен р=(68,7+АЕ)/2.
Тогда, освободившись от корня, имеем:
Sabe²=((78,2+АЕ)/2)*((78,2-АЕ)/2)*((АЕ-21,2)/2)((АЕ+21,2)/2)=
(78,2²-АЕ²)*(АЕ²-21,2²)/16.
Sace²=((68,7+АЕ)/2)*((68,7-АЕ)/2)*((АЕ-11,7)/2)((АЕ+11,7)/2)=
(68,7²-АЕ²)*(АЕ²-11,7²)/16.
Sabe²=Sace². Пусть АЕ²=х. тогда
(78,2²-х)*(х-21,2²)=(68,7²-х)*(х-11,7²)
Дальше сплошная арифметика:
78,2²х-х²-78,2²*21,2²+21,2²х=68,7²х-х²-68,7²*11,7²+11,7²х.
х(78,2²+21,2²-68,7²-11,7²)=78,2²*21,2²-68,7²*11,7².
х(9,5*146,9+9,5*32,9)=1657,84²-803,79².
1708,1*х=854,05*2461,63. Отсюда х=1230,815.
Тогда АЕ=√1230,815≈35,08
Ответ: медиана АЕ≈35,1.
<em>Треугольник
АВН прямоугольный и равнобедренный (сумма острых углов равны
90 и один из них равен
45). Значит,
ВН=
АН</em>
<em><u>Ответ: 125см^2</u></em>
Делаем так: 4х10=40 и 40:2=20. Ответ:DE=20
Y = kx + b ← уравнение прямой
<span>В(-2;2)
К(1;4)
Составляем и решаем систему с данными координатами точек:
{-2k + b = 2
-
{k + b = 4
--------------------
-3k = -2
3k = 2
k = 2/3
</span>k + b = 4
2/3 + b = 4
b = 4 - 2/3
b = 10/3
Искомое уравнение: у = (2/3)х + 10/3