расстояние от точки до плоскости в квадрате равно 20^2 - 16^2, а вторая проекция в квадрате равна 15^2 минуc эта величина
<span>BD=DA=1.5см. Биссектриса BC, она же высота, делит угол пополам, а значит и сторону, на которую опущена</span>
<em>Сумма углов выпуклого n-угольника и одного из его внешних углов равен 990°. </em><u><em>Найдите </em></u><u><em>n.</em></u>
<em>Внешним углом</em> выпуклого многоугольника при данной вершине называется <u>угол, смежный внутреннему угл</u>у многоугольника при этой вершине. Сумма одного внутреннего и внешнего угла при нем равна развернутому углу, т.е. 180°. Тогда на долю остальных n' = (n-1) углов данного многоугольника приходится 990°-180°=810°. Найдем количество <em>n'</em> остальных углов. 810°:n'=180°(n'-2):n';, откуда n'=6. А с углом. который мы вычли, число углов (и, естественно, сторон) данного многоугольника равно <em>7</em>.
Или: <u>Формула суммы углов</u> выпуклого n-угольника <em>180°(n-2)</em>. Сумма всех <u>внешних углов</u> многоугольника <em>360°</em>. Предположим, что этот многоугольник правильный. Тогда величина внешнего угла 360°:n. Составим уравнение: <em>180°(n-2)+360°/n</em>=<em>990°</em>. Сократим для удобства все члены уравнения на 90 и умножим их на n , после чего соберем все его члены по одну сторону и получим квадратное уравнение <em>2n²-15n+4</em>=<em>0</em>. Корни этого уравнения <em>≈ 7,54</em> и<em> ≈0,25</em>. Число сторон многоугольника не бывает дробным. Пусть n=7. Тогда сумма внутренних углов семиугольника 180°•5=900°, а добавленный к ней внешний угол 990°-900°=90°. <em>Смежный с ним внутренний может быть равен только </em><em>90°.</em> Данный многоугольник не является правильным, его углы могут иметь разную величину, но их <u>сумма будет 900</u>°. ( Например, 6 углов будут по (900°-90°):6=135°, а седьмой равен 90°, а их сумма 6•135°+90°=900°). Ответ: n=7
Медиана, проведённая из прямого угла, равна половине гипотенузы. Площадь
треугольника равна половине пооизведения основания на высоту.
Пользуясь тем,
что в прямоугольном треугольнике площадь также равна половине
произведения катетов, и теоремой Пифагора, найдём BC.
Теперь распишем теорему косинусов для треугольника BMC.
<span /><span />
из подобия треугольников BCE и BC1E1
BC1:BC = C1E1:CE = 3:8
BC1 = 28*3/8 = 21/2