<span>a)16/9
принадлежит
б)37/23=1 целая 14/23 < 1,7
не принадлежит
в)180/101<180/100=1,8
1,7<180/101<1,8
принадлежит
г)9/5=1,8</span>
интервалу в круглых скобках не принадлежит, отрезку в квадратных - принадлежит
Обозначим учеников точками на плоскости, а дружеские связи отрезками, соединяющими эти точки. Пусть в классе n учеников. Т.к. из каждой точки выходит ровно 3 отрезка и каждый отрезок связывает 2 точки, то количество отрезков равно 3n/2.
1) Если n=25, то 3*25/2 не является целым числом, поэтому в классе не могло быть 25 учеников.
2) Если n=18, то 3*18/2=27. Т.е. должно быть 27 отрезков. Но это еще не доказывает, что 18 точек можно связать 27 отрезками так, что из каждой точки выходит ровно 3 отрезка, поэтому предъявим такое расположение. Поместим точки в вершинах выпуклого 18 угольника, пронумеруем их по порядку от 1 до 18, и нарисуем стороны этого 18-угольника. В результате, каждая его вершина будет связана с двумя соседними, т.е. из каждой вершины выходит ровно 2 отрезка. Осталось соединить вершины 9 диагоналями так, чтобы из каждой вершины выходила ровно одна диагональ. Т.к. количество точек четное, то это возможно: например соединяем точки так: [1,10], [2,11], [3,12],..., [9,18]. Видим, что это действительно дает диагонали, т.к. в каждой паре разница между номерами не равна 1. При этом каждая вершина участвует по одному разу. Понятно, что это работает и для любого четного n.
Нет
формула прямой пропорциональности y=kx
подставим y=0,x=5
0=5k
k=0
Следовательно,
y=x•0
y=0
дуга окружности измеряется градусной мерой центрального угла, опирающегося на эту дугу. градусная мера полуокружности 180°) вся окружность 360°
Раскладываем на множители и каждый приравниваем к 0
х-2=0;х+2=0;✓х+1=0,х≥-1
х=2;х=-2(не уд);х=-1
Ответ:-1;2