1) А(-5;4) В(3;-2) Найдём координаты вектора АВ( 3-(-5);-2-4)
АВ(8;-6)
IABI=√(8²+(-6)²=√100=10
2) А(-2;7) В(2;1) С(-7;-5)
Найдём координаты и длину вектора АВ :
АВ(4;-6)
IABI=√(4²+(-6)²=√52=2√13
Найдём координаты и длину вектора ВС:
ВС(-9;-6)
IBCI=√(-9)²+(-6)²=√117
cosB=(AB·BC)/IABI·IBCI
cosB=(4·(-9)+(-6)·(-6))/√52·√117=(-36+36)/√52·117=0
угол В=90 град
3) а(-2;3) b(4;-2) а·b=-2·4+3·(-2)=-8-6=-14
4) IaI=12 IbI=7 α=60
a·b=IaI·IbI·cos60=12·7·cos60=12·7·1|2=42
5) M(6;8) К(-2;7)
МК(-2-6;7-8) МК(-8;-1)
IMKI=√((-8)²+(-1)²=√65
6) если векторы перпендикулярны , то их скалярное произведение равно 0
а·b=-5·4+р·(-10)
-20-10р=0
-10р=20
р=-2
а(-5;-2)
7)b(4; -7) а(-14;-8)
IbI=√4²+(-7)²=√16+49=√65
IaI=√((-14)²+(-8)²)=√260
cos(ab)=(a·b)/IaI·IbI
cos(ab)=(-14·4)+(-7)·(-8))/√65·√260=0
cos(ab)=0 , значит угол вежду векторами а и b 90 градусов ( прямой угол ), т. е векторы перпендикулярны
8) а(-2р+3с)-(-4р+2с) р(-1;2) с(2;-3)
а(-2р+4р+3с-2с)=(2р+с)
а(-2(-1;2)+(2;-3) а(4;-7)
IaI=√(4²+(-7)²=√(16+49)=√65
Пусть имеется отрезок АВ. Делим его на две равные части с помощью циркуля. Потом одну из полученных половинок снова с помощью циркуля делим на две равные части. Полученные меньшие отрезки и будут равны 1/4АВ
РЕШЕНИЕ
Рисунок к задаче в приложении.
По теореме Пифагора находим гипотенузу - большее ребро в основании.
с² = a²+b² = 64+36 = 100
c= √100 = 10 - третья сторона и высота призмы.
Площадь боковой поверхности по формуле:
Sбок = P*h = (6+8+10)*10 = 240 см² - боковая
Площадь основания (прямоугольный треугольник)
So = a*b/2 = 6*8/2 = 24 см².
Полная поверхность призмы:
S = 240 + 2*24 = 288 см² - площадь - ОТВЕТ
Объем призмы по формуле:
V = So*h = 24*10 = 240 см³ - объем - ОТВЕТ
<em>У параллелограмма, не являющегося ни ромбом, ни прямоугольником, нет осей симметрии.</em>
<em>Ответ. Ноль. </em>
<em>На всяк случай, если речь о квадрате, то в нем 4 оси симметрии, но параллелограмм не может быть квадратом, не будучи прямоугольником.</em>