В 3 треугольники ABD и BСF равны по двум сторонам и углу=> AB = BC
4. AMD = BCN=> BON=MOD, BOA= OCD из-за того что ABCD -параллелограмм=>BNA=CMD
<span>В конус, осевое сечение которого есть равносторонний треугольник, вписан шар. Найдите объём конуса, если объём шара равен </span>
Vшар = 4pi*R^3/3
32/3= 4piR^3/3
4piR^3=32
R=(8/pi)^(1/3)
теперь найдем длину стороны через формулу R=√3a/6
(8/pi)^(1/3) = √3/6 *a
a= 12/pi^(1/3)*√3
теперь радиус самого конуса будет равен
половине стороны!
значит он равен
R= 6/pi^(1/3)*√3
H=√3/2 *a = 6/pi^(1/3)
теперь все ставим в формулу V= piR^2/3 = 12/ pi^(2/3)*pi*6/pi^(1/3) /3= 72/3 =24
В треугольнике авс ак - биссектриса, тогда угол вак=углу кас
мк//ав, тогда угол мка = углу вак при параллельных ав и км и секущей ак.
в треугольнике акм угол а=к и акм равнобедренный
Пусть ∠ а=х, ∠в=5х, х+5х=180°, т к сумма смежных углов=180°,
6х=180°, а= х=180°/6=30°, в=5х=5*30°=150°