EC=AC:2
EC=76.7:2=38.35 см
Ответ EC равняется 38.35 см
Найдём площадь
S=1/2·16·10=80
С другой стороны эта же площадь равна
S=1/2·10·h
80=5·h
h=80:5=16
У описанных четырехугольников суммы противоположных сторон равны
АВ+СD=ВС+АD. По условию: 6+9=8+х; 15-8=х;
х=7.
Р(АВСD)=6+8+9+7=30.
Так как CF-биссектриса, то угол DCF =FCE= 35°.
Угол С=угол DCF+угол FCE =35°+35°=70°
по теореме о сумме углов треугольников, угол Е = 180 - угол С - угол D=180-70-68 =42°
По теореме о сумме углов треуголька, угол CFE=180 - угол FCE- угол Е= 180- 35- 42=103°
Ответ: Угол Е=42°,угол CFE = 103°
А) На прямой а отложим отрезок АВ, равный 5 см.
Проведем две окружности с центрами в точках А и В и радиусом, равным 5 см. Точка пересечения этих окружностей - С - третья вершина треугольника.
б)
1) Если в равнобедренном треугольнике один любой угол равен 60°, то это равносторонний треугольник.
Его строить так же, как и предыдущий, только длина отрезка АВ и радиусы окружностей должны быть 6 см.
2) На прямой а отметим точку В.
Построим точки пересечения дуг произвольного радиуса с центром в точке В и прямой а - это точки О и Р.
С центрами в точках О и Р проведем окружности произвольного одинакового радиуса, большего половины отрезка ОР.
Через точки пересечения этих окружностей проведем прямую b. Она будет перпендикулярна прямой а.
От точки В на прямых а и b отложим одинаковые отрезки ВА и ВС, длиной 6 см.
Треугольник АВС - прямоугольный, равнобедренный с боковой стороной 6 см.
3) На прямой а отложим отрезок АО, равный 6 см.
Проведем две окружности одинакового радиуса, равного АО, с центрами в точках А и О.
С - одна из точек пересечения этих окружностей.
Проведем прямую b через точки пересечения окружностей.
На прямой b отложим отрезок СВ, равный 6 см.
АВС - искомый треугольник.
Доказательство:
ΔАОС - равносторонний, значит ∠АСО = 60°.
b - серединный перпендикуляр к АО, значит и биссектриса треугольника АСО.
Тогда ∠АСВ = 30°.