Обозначим пирамиду АВСS(смотри рисунок). Пирамида правильная значит в основании лежит правильный треугольник( обозначим его сторону а) и высота ОS пирамиды проецируется в центр основания. Кратчайшее расстояние МК перпендикулярна АS. Из треугольника SВК найдём боковое ребро. Прямоугольные треугольники АМК и АSО подобны по острому углу SАО. Отсюда находим Н. Дальше по теореме Пифагора, из треугольника АSО находим выражение а квадрат. Подставляем найденные значения в известную формулу. Ответ на рисунке.<span />
Ответ:24
Объяснение:X-неизвестный катет
Сумма квадратов катетов равна квадрату гипотенузы,
соответственно 8*8+X*X=10*10
64+X*X=100
X*X=100-64
X*X=36
X=6
Формула нахождения площади прямоугольного треугольника-
S=(a*b):2
Подставляем-S=(6*8):2
S=48:2
S=24
Рассмотрим треугольник АВН он прямоугольный и ВН меньше АВ в 2 раза значит угол А=30⇒ угол В=180-30=150
∠Д=90-∠А/2 но ∠А=∠Д(равнобедренная трапеция)⇒1,5∠Д=90⇒∠Д=60
3)1+2+1=4
32*4=8
N₁N₃=8+2*8=24
MKP=180-EKM (т.к. сумма смежных углов = 180)
MKP=180-98=82
MPK=180-MKP-KMP(т.к. сумма углов треугольника равна 180)
MPK=180-82-54=44
R описанной окр=(√2/2)*a (a-сторона квадрата )
a*(√2/2)=10
a=10√2 см
S=a²
S=(10*√2)²=200 см²
r вписанной окр=a/2=(10√2)/2=5√2 см