3. от А опустим высоту на СВ в точку Н, угол ВСА=180-75-60=45; следовательно АНС равнобедренный АН=4*sqrt (2)/2=2*sqrt(2);
AB=AH/sin60=4*sqrt (2/3);
4. sinB=2*sqrt (3)/4=sqrt (3)/2
5. опустим высоту из В высоту ВН на АС. < ВСН=45 ВС= АН=х и получим по уравнению Пифагора уранение (2+х)^2+х^2=4*2;
х^2+2х-4=0;
Д=4+16=20;
х=(-2+sqrt (20))/2=sqrt (5)-1;
tgA=(sqrt (5)-1)/(sqrt (5)+1);
угол А равен arctg ((sqrt (5)-1)/(sqrt (5)+1));
6. опустим высоту ВН на АС и вычислим ее. ВН=sqrt (6)/2;
BH/BC=sinC=sqrt (2)/2. угол В равен 45; угол А равен 180-45-60=75;
Здесь получается довольно интересный чертёж) Диагональ одновременно является высотой. получается два прямоугольных треугольника, в котором углы 30 и 60 градусов. Мы знаем, что сторона, лежащая напротив 30 градусов, равна половине гипотенузы, поэтому эту сторону напротив 30 градусов отмечаем как х, а гипотенузу как 2х. Получается 2х+2х+х+х=72, 6х=72, х=12. Значит, две стороны по 12 см и две по 24 см)
Ответ: 12 см, 12 см, 24 см, 24 см.
Катет против угла30 град=половине гипотенузы.5=5=10.Периметр=40см
Ну тут по коэффициенту подобия.
1) P1 = 12+16+20=48 (дм)
2) P2\P1 = k (коэф. под.)
Тогда 60\48=1,25
12 * 1,25 = 15(дм)
16 * 1,25 = 20(дм)
20 *1,25 = 25(дм)
Площадь сама находи с:
Треуг. АВС и МКР равны ( по первому признаку) и т. к. треугольники прямоугольные=>
напротив угла в 30 градусов лежит катет равный половине гипотенузы