Ответ:1) 1:2 2)1:3
Объяснение:1)Проведём ВМ⊥ АС, ВМ∩ МN=F, MN-средняя линия ΔАВС по определению, МN ║FC по свойству средней линии. По теореме Фалеса BF=FM=0,5ВМ. По свойству треугольников с одинаковыми основаниями площади относятся, как их высоты.
S ΔАКС : S ΔАВС=FM:BM=0,5ВМ:ВМ=1:2 Ответ: 1:2
2)ΔMCF=ΔMAO по 2-ому признаку равенства треугольников
(АМ=МС по условию; ∠АМО=∠СМF, как вертикальные;∠АОМ=∠СFМ, как накрестлежащие при АО║СF и секущей OF).
По свойству медиан треугольник делится ими на 6 равновеликих треугольника. S ΔFOC=S ΔOMC+S ΔMCF=S ΔOMC+S ΔAOM=1/6 S ΔАВС+ 1/6S ΔАВС= 1/3 S ΔАВС
S ΔFOC : S ΔFDC=1:3 Ответ: 1:3
Только первое, так как одинаковый объем не всегда имеет одинаковую форму.
Следует отметить, что расстояние от точки А до прямой а равно расстоянию от точки В до прямой а, так как прямая а параллельна АВ (по условию), а расстояние есть перпендикуляр опущенный на прямую. Рассматриваем треугольник образованный стороной ВС (гипотенуза), расстоянием от В до прямой а (катет) и отрезком на прямой а. Этот треугольник прямоугольный. Угол В - 30°, . В прямоугольном треугольнике против угла 30° лежит катет равный половине гипотенузы.
14/2=7 см.
Расстояние от В до а (= от А до а) = 7 см.
<span>Дуга NP равна 180 гр. (ровно половина окружности). Вписанный угол
MNP равен половине дуги, на которую он опирается, т.е. дуга MP равна 36
гр.. Дуга MN равна 144 гр.. Угол MON - центральный, а значит будет равен
дуге MN, т.е. <span>MON=144 гр.</span></span>