Пусть это пирамида <em>КАВС</em>,
КО- высота пирамиды,
АН - высота правильного треугольника (основания пирамиды)
Пусть нужный угол между боковым ребром и плоскостью основания пирамиды - это угол между боковым ребром КА и высотой АН правильного треугольника ( основания пирамиды).
Высоту правильного треугольника находят по формуле
<em>h=a(√3:2)</em>, где а- сторона треугольника.
h=8(√3:2)=<em>4√3
</em>Так как основание - правильный треугольник, основание высоты пирамиды находится в точке О пересечения высот правильного треугольника.
Расстояние от О до основания А ребра КА по свойству медиан равно 2/3 высоты АН
( она же и медиана);
<em>АО</em>=2*(4√3):3=<em>(8√3):3</em>
Треугольник КАО - прямоугольный ( высота перпендикулярна плоскости основания).
<u>Тангенс угла КАО</u> - это отношение
<em>КО:АО</em>=6:(8√3)/3
<span>Тангенс КАО=18:8√3=9:4√3=<em>3√3/4</em>. </span>
Так как все стороны ромба равны то периметр=4*a
P=4*6.2=24.8
ответ:24.8
Через любую точку, не лежащую на данной прямой, можно провести одну прямую, параллельную данной, и при том только одну. Параллельные прямые не пересекаются.
Удачи^^