Диагональ делит параллелограмм на 2 равных треугольника. Считаем площадь одного, умножаем на 2 и - вуаля! (площадь треугольника считаем по формуле S = a*b*sin(C)/2). Окончательно
<h2><u>
Дано</u>
:</h2>
ABC - треугольник.
Длина стороны AB = 2 см.
Длина стороны BC = 3 см.
Длина стороны AC = 3 см.
BM - биссектриса.
<u>Найти</u> нужно: длины AM и MC.
<h2><u>
Решение</u>:</h2>
0. Построим чертёж.
1. Вспомним теорему о биссектрисе треугольника:
- Биссектриса треугольника делит его сторону на части, пропорциональные двум другим сторонам.
Для нашей задачи это значит следующее: .
2. Учитывая записанное выше соотношение, сторону AC можно мысленно разбить на 3 + 2 = 5 частей. Две части из которых составляют отрезок AM, три части - CM.
Пусть длина каждой из 5 частей равна х.
Тогда: AM = 2x, CM = 3x.
Таким образом, можем записать следующее: .
Отсюда: см.
3. Зная длину одной части, можем легко получить ответ:
(см).
(см).
<h2><u>
Ответ</u>: AM = 1,2 см и CM = 1,8 см.</h2>
Медиана в равнобедренном треугольнике является высотой и биссектрисой. Значит угол BMC= 90
Значит угол С=180-(40+90)=180-130=50
так как треугольник равнобедренный то угол А=углу С=50 градусов
угол В = 40*2=80 так как БМ биссектриса
Угол 1=углу 2(как соответственные углы), а значит угол 2=43°
AN - касательная, следовательно угол ANO - прямой.
KO обозначим за Х
получаем