т.к. диагональ квадрата равна произведению корня из двух на сторону,то сторона равна 4 см. S=а^2=16см^2
Пусть основание равно x см, тогда боковая сторона равна 0.8x см, тогда:
x+0.8x+0.8x=15.6
2.6x=15.6
x=6
Значит основание равно 6 см, тогда боковая сторона равна 0.8*6=4.8 см.
Ответ: 6 см, 4,8 см, 4,8 см
Ответ:
АВ ; АС.
Объяснение:
Против равных углов в треугольниках лежат равные стороны:
АВ и ВС
S = h*AB = DO*AB
1. Найдем ВС:
ВС = ВЕ+ЕС = 7+3 = 10 см
2. Найдем угол DAB:
DAB = (360 - 150*2) : 2 = 30°
3. Построив высоту DO, получаем прямоугольный треугольник AOD. Зная, что катет прямоугольного треугольника (в нашем случае это DO), лежащий против угла 30 градусов равен половине гипотенузы (это AD), находим DO:
DO = AD : 2 = BC : 2 = 10 : 2 = 5 см
4. Рассмотрим треугольник АВЕ. Угол В по условию 150. Т.к. АЕ - биссектриса, то угол ЕАВ равен половине угла DAB:
EAB = 30 : 2 = 15°
Находим оставшийся неизвестный угол АЕВ треугольника АВЕ:
АЕВ = 180 - 15 - 150 = 15°
Таким образом, треугольник АВЕ - равнобедренный, т.к. углы при его основании АЕ равны. Значит, АВ = ВЕ. АВ = 7 см.
5. Находим площадь параллелограмма:
<span>S = DO*AB = 5 * 7 = 35 см</span>²
<span> Опустим</span> из тупого угла трапеции<span> высоту на большее основание</span>.
Получим прямоугольный треугольник с гипотенузой = диагонали трапеции, один из острых углов которого 30° из условия задачи.
Высота, как катет, противолежащий углу 30°, равна половине диагонали и равна 2 см
Боковая сторона равна 2√2, отсюда отрезок, который высота отрезала от большего основания, равен 2 см, так как боковая сторона равна диагонали квадрата со стороной 2 см (п<span>о формуле диагонали квадрата а√2) </span>. Так как образовался равнобедренный прямоугольный треугольник,<span> острые углы</span> в нем
45°, и поэтому второй <span>угол при большем основании равен 45°</span>. Отсюда <span>тупой угол при меньшем основании равен</span>
180-45=135°.