1)Пусть С- прямой угол в прямоугольном треугольнике АВС, тогда СН-высота проведенная к гипотенузе, СМ- биссектриса,проведенная к гипотенузе.
2)По условию сказано, что угол между СМ и СН равен 15 градусов.
3)По свойству биссектрисы угол АСМ= углу МСВ=45 градусов(т.к С по условию 90),значит, так как угол НСМ=15 градусов, а угол НСМ+угол АСН=45 градусов, то угол АСН равен 30 градусам.
4)Так как СН высота, то угол СНА равен 90 градусов, следовательно угол САН=60 градусов( по теореме о сумме углов треугольника).
5)Значит, в треугольнике АВС угол В = 180-90-60=30 градусов( по теореме о сумме углов треугольника)
6) Так как в прямоугольном треугольнике против угла в 30 градусов лежит катет равный половине гипотенузы, то АС=3 см
7) По теореме Пифагора СВ= 3 корня из 3
Ответ: 3 и 3корня из 3
Подробнее - на Znanija.com -
znanija.com/task/18706467#readmore
В треугольнике АВС АВ=ВС, ВМ - высота, ВО=5 см, МО=3 см.
В тр-ке АВМ АО - биссектриса. По теореме биссектрис АВ/АМ=ВО/МО,
АВ/АМ=5/3.
Пусть АВ=5х, АМ=3х.
ВМ=ВО+МО=5+3=8 см.
По т. Пифагора АВ²=АМ²+ВМ²,
25х²=9х²+8²,
16х²=64,
х=2.
АВ=ВС=5х=10 см,
АС=2АМ=2·3х=12 см.
Пусть ромб имеет сторону a и диагонали d1 и d2. Тогда a = sqrt((d1/2)^2+(d2/2)^2)=sqrt(d1^2+d2^2)/2.
Теперь рассмотрим треугольник, у которого две стороны равны a, третья сторона является d1. Искомый острый угол находится в этом треугольнике между сторонами, равными a. Площадь этого треугольника можно найти двумя способами.
1) S=1/2 * d1 * d2/2 = d1*d2/4
2) S=1/2 * sin(fi) * a * a = 1/2 * sin(fi) * (<span>sqrt(d1^2+d2^2)/2)^2 = 1/2 * sin(fi) * (d1^2+d2^2) / 4=(d1^2+d2^2)*sin(fi)/8
Приравняем их и получим:
</span>d1*d2/4=<span>(d1^2+d2^2)*sin(fi)/8,
</span>sin(fi)=2*d1*d2/(d1^2+d2^2)
Подставим значения:
sin(fi)=2*3*4/(3^2+4^2)=24/25
Можно. Из арбуза можно вырезать кусок в виде столбика идущего через весь арбуз. У этого куска будут две корки соединенные мякотью
Может быть и прямым и тупым