Треугольник равнобедренный. Боковые стороны равны. Принимаем их равными Х.
Тогда основание будет равно Х+9.
Х+Х+(Х+9)=45
3Х=45-9
3Х=36
Х=12 – это боковые
И основание 12+9=21.
Проверка: 21+12+12=45
Если бы он не был тупоугольным, тогда бы боковые стороны были бы больше основания.
Т. е основание было бы Х
И боковые Х+9
Х+(Х+9)+(Х+9)=45
3Х+18=45
3Х=27
Х=9 - основание
И боковые: 9+9=18
<span>Проверка: 9+18+18=45</span>
ВА будет 10 иили сколько у тебя там КР
КР=АВ
Докажем сначала, что это параллелограмм. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
Пусть точка О1(х;у) середина АС тогда
х=(-6+6)/2=0; у=(1-4)/2=-1,5.
Пусть точка О2(х;у) середина BD тогда
х=(0+0)/2=0; у=(5-8)/2=-1,5.
Значит О1 совпадает с О2 - значит ABCD параллелограмм.
О(0;-1,5) - точки пересечения его диагоналей.
Докажем что это прямоугольник. Если диагонали параллелограмма равны то он прямоугольник.
АС^2=(6+6)^2+(-4-1)^2
АС^2=12^2+(-5)^2
АС^2=144+25
AC^2=169
AC=13
BD^2=(0+0)^2+(-8-5)^2
BD^2=0^2+(-13)^2
BD^2=0+169
BD^2=169
BD=13
AC=BD
ABCD - прямоугольник
Пусть O — центр окружности. Предположим, что точка Q лежит на продолжении диаметра MP за точку P. Из прямоугольного треугольника ONQ находим, что
QN = ON· ctg60 =
·
=
, OQ=2NQ =2.
Тогда QM=MO+OQ=
+2
. По теореме о внешнем угле треугольника
MON =90+60 =150 градусов
По теореме косинусов из равнобедренного треугольника MON находим, что
MN2= OM2+ON2-2OM· ON cos150=6+6+2·6·
=12+6
.
По формуле для медианы треугольника
QD2=1/4 (2QN2+2QM2-MN2)= 1/4(2·2+2(
+2
)2-12-6
)=1/4(20+10
).
Следовательно,
QD = 1/2 <u></u>
=