Дополнительное построение: NC
NC ∩ FM = O
Рассм. NFCM - ромб
NC ⊥ FM по св-ву ромба
NO = OC
FO = OM - по св-ву параллелограмма
NF = FC = CM = NM - по определению ромба
FC = 18 см ⇒ NF = FC = CM = NM = 18 см
Рассм. ΔNFO - прямоугольный
cos ∠ NFO = FO/NF - по определению
∠ NFO = 30° - по условию
cos30° = √3/2 ⇒ √3/2 = FO/18
2FO = 18√3
FO = 9√3 см
Рассм. NFCM - ромб
FO = OM - по выше доказанному
FM = FO + OM = 2FO
FO = 9√3 см
FM = 2*9√3 = 18√3 cм
Ответ: FM = 18√3 cм
Вроде так,но с вычислениями проблемы у меня
1)
MN -это средняя линия Δ. Равна половине основания:
10:2=5 см. (пояснение: AM=MB)/
4)Найдем ВС:
√64+36=√100=10 см.
синус∠С=6/10=3/5=0,6 ;
косинус ∠С=8/10=4/5=0,8;
тангенс∠С=6/8=3/4=0,75 .
Далее по таблице Брадиса или по калькулятору находим угол в градусах.
1) ΔСАВ =ΔКДВ (по 1 - ому признаку равенства Δ).
<СВА = <КВД = 29 град
<FBK + <KBA = 180 град (смежные углы)
<KBA=<KBD +<CBA=29 град + 29 град=58 град
<FBK=180 град - 58 град = 122 град
Ответ: 3) 122 град
2) Так как ΔВСМ - равносторонний, то
ВС=СН=ВН
Р ΔВСМ = ВС+СН+ВН=3*ВС
39=3*ВС
ВС=39/3=13
АВ=ВС=13 см
Р ΔАВС=АВ+ВС+АС
450 мм=45 см
45=13+13+АС
АС=45-26=19 (см)
19 см=190 мм
Ответ: 4) 190 мм
3) ΔАВД=ΔСВЕ (по 2-ому признаку равенства Δ)
Р ΔАВД=Р ΔСВЕ
ВД=ВЕ=12 см
Р ΔАВД=АВ+АД+ВД=24+12=36 (см)
ДЕ=ВЕ/2=12/2=6 (см)
Р ΔВДЕ=ВД+ВЕ+ДЕ=12+12+6=30 (см)
Р ΔАВД + Р ΔСВЕ - Р ΔВДЕ=36+36-30=42 (см)
Ответ: 2) 42 см
ΔАBC и ΔBCH - подобны ⇒
SinA=sin(BCH) = BH/BC,
где BH= √(BC² - CH²) = √(25 - 21) = 2;
sin A = 2/5 = 0,4