1. A) B(0; 6; -2)
2. OA = √(x² + y² + z²) = √(25 + 1 + 4) = √30
3. a(6; -2; -3), b(6; 6; 3)
1) |a| = √(36 + 4 + 9) = √49 = 7 (A)
2) |b| = √(36 + 36 + 9) = √81 = 9 (B)
3) |b - a| = |(0; 8; 6)| = √(0 + 64 + 36) = √100 = 10 (Г)
4) a·b = 6·6 - 2·6 - 3·3 = 36 - 12 - 9 = 15 (Д)
4. x₁ = 2x₀ - x₂ = -10 - 3 = -13;
y₁ = 2y₀ - y₂ = 6 - 1 = 5;
z₁ = 2z₀ - z₂ = 20 - 14 = 6
М(-13; 5; 6)
5. a·b = 0;
-4·2 + n·3 + 4·5 = 0;
-8 + 3n + 20 = 0;
3n = -12;
n = -4.
6. A(1; -3; -1), B(4; -2; 2), C(9; 5; -7)
x₀ = (x₁ + x₂)/2 = (1 + 9)/2 = 10/2 = 5
y₀ = (y₁ + y₂)/2 = (-3 + 5)/2 = 2/2 = 1
z₀ = (z₁ + z₂)/2 = (-1 - 7)/2 = -8/2 = -4
N(5; 1; -4)
BN = √(5² + 1² + 4²) = √(25 + 1 + 16) = √42
7. k = BD₁
BD₁ = √(a² + b² + c²) = √(BC² + BA² + BB₁²) = √(36 + 4 + 16) = 2√14
Решить уравнение 2sin^2 x+cos 5x=1
cos5x=1-
cos5x=cos2x
cos5x-cos2x=0
или
, n∈Z или
, m∈Z
, n∈Z
, m∈Z
В общем, не претендуя на строгость доказательства, выскажу свои соображения. Обе скобки в квадрате будут >=0. Соответственно их сумма тоже всегда будет >=0. Чтобы выражение обратилось в 0, нужно, чтобы обе скобки обратились в 0.
Соответственно
<em>x</em> будет корнем только тогда, когда он занулит обе скобки одновременно. Это условие приводит к 2м уравнениям
1-е уравнение квадратное. Решение его дает 2 возможных корня
x=1 и x=2. А вот из 2-го получается условие x=а.
Получается что любой корень должен быть равен a. Т. е. какое бы фиксированное значение а мы ни возьмём, 2я скобка зануляется только при одном значении <em>х=а</em>. Таким образом ни при каких а два разных корня мы не получим.
При х принадлежащем промежуткам [-inf;-5] [-4/3; 2]
.................................