(4-y)²-y(y-1)=16-8y+y²-y²+y=16-7y
при y=-1/9
16-7*(-1/9)=16+7/9=16 7/9
Ответ: 16 7/9
Если p=-2,18;q=10,9
(5*(-2,18)+10,9):(-2,18-4*10,9)
(-10,9+10,9):(-2,18-43,6)
0:-45,78=o
p=2;q=3
(5*2+3):(2-4*3)
13:(-10)=-1,3
1. (20-х):3+32=35
Решение:
1) Упрощаем.
2)Умножаем все на 3 чтобы избавится от знаменателя.
3)Находим х.
2. (120:у-3)*11=187
Решение
1) Выражаем (120:у-3)
2) Упрощаем по свойству пропорции
3) Упрощаем
4) получаем у
Ответ: 1. х=11, 2. у≈10,06.
Если неправильно напиши правильное решение)
А1. а) -0,01х^2х•10х^4=-0,1х^7
б) 2а^2b^5•8a^3b^2a=16a^6b^7
A2. a) (10x^4y^3)^2•(0,8x)^2•y^9 =
= 100x^8y^6•0,64x^2•y^9 =
= 64x^10y^17
б) (-5а^3b^4)^2•(-0,2ab^2)^2 =
= 25a^6b^8•0,04a^2b^4 =
= a^8b^12
в) (10а^3)^5•(-2а^2)^2 =
= 100000а^15•4а^4=400000а^19
В1. а) 121х^12у^4=(11х^6у^2)^2
б) 0,09а^6b^2=(0,3a^3b)^2
B2. Сторону квадрата надо изменить в 6 раз.
Вершины парабол будут расположены по одну сторону от оси ОХ, если ординаты вершин будут иметь одинаковый знак, т.е. обе ординаты будут положительны (обе вершины выше оси ОХ) или обе отрицательны (обе вершины ниже оси ОХ)
.