1)1. х³-9х²+20х = х(х²-9х+20) = 0.
х₁ = 0.
<span>х²-9х+20) = 0.
</span>Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-9)^2-4*1*20=81-4*20=81-80=1;<span> Дискриминант больше 0, уравнение имеет 2 корня:</span>
x₂=(2root1-(-9))/(2*1)=(1-(-9))/2=(1+9)/2=10/2=5; x₃=(-2root1-(-9))/(2*1)=(-1-(-9))/2=(-1+9)/2=8/2=4.
2. х⁴-29х²+100=0. Заменим х² = у.
Получаем квадратное уравнение у²-29у+100 = 0.
Квадратное уравнение, решаем относительно y: <span> Ищем дискриминант:</span>
D=(-29)^2-4*1*100=841-4*100=841-400=441;<span> Дискриминант больше 0, уравнение имеет 2 корня:</span>
y₁=(2root441-(-29))/(2*1)=(21-(-29))/2=(21+29)/2=50/2=25; y₂=(-2root441-(-29))/(2*1)=(-21-(-29))/2=(-21+29)/2=8/2=4.
Обратная замена: х = √у.
х₁,₂ = √25 = +-5,
х₃,₄ = √4 = +-2.
3) 3х²-11х+6>0.
Приравниваем нулю <span>3х²-11х+6 = 0.
</span>Квадратное уравнение, решаем относительно x: <span> Ищем дискриминант:</span>
D=(-11)^2-4*3*6=121-4*3*6=121-12*6=121-72=49;<span> Дискриминант больше 0, уравнение имеет 2 корня:</span>
x_1=(√49-(-11))/(2*3)=(7-(-11))/(2*3)=(7+11)/(2*3)=18/(2*3)=18/6=3; x_2=(-√49-(-11))/(2*3)=(-7-(-11))/(2*3)= (-7+11)/(2*3)=4/(2*3)=4/6=2/3.
(2/3) > x >3.
4) 3(x-1)-2(1+x)< 1
3x>4
3x-3-2-2x < 1
x-5 < 1
x < 6
4/3 < x < 6.
Шерсть= 3х
акрил= 4х
хлопок= 5х
3х + 4х + 5х = 180
12х = 180
х = 15
хлопок = 5 х 15= 75 грамм
Это 1-ый и 2-ой и 3-тий примеры по алгоритму
1) Выражение в форме многочлена: 12x^4*y^3 + x^3*y^3 (для этого достаточно раскрыть скобки и перемножить). А при подстановке чисел, у нас получается 35.
2) Раскрыв скобки и сгруппировав слагаемые: первое с третьим (при этом выносим за скобку 4ab) и второе с четвертым (выносим за скобку b^2) получаем следующее выражение:
4ab(3ab-5) - b^2*(3ab-5)
Вынесем за скобку (3ab-5)b и получаем окончательный ответ
b(4a-b)(3ab-5)