Рассмотрим треугольники:
AD=AB, CD=CB, AC-ОБЩААЯ, следовательно треугольники равны по 3 признаку,
следовательно угол B=D=120
AC^2=BC^2-AB^2=20^2-12^2=400-144=256
<span>AC=16 см</span>
<span>Cos C=AC/BC<span>=16/20=0.8( но за косинус не уверен)</span></span>
AB=sqrt (1+4+9)=sqrt(14)
BC=sqrt (4+4+4)=sqrt(12)
AC=sqrt(9+0+1)=sqrt(10)
cos C= (12+10-14)/ (2*sqrt(120))=4/(2*sqrt(30))=2*sqrt(30)/30
C=arccos( 2*sqrt(30)/30 )
Если прямые А и В параллельны, то ответ на рисунге, если непараллельны, то четыре из углов - как на рисунге, четыре других вычислить невозможно...
Пусть стороны оснований параллелепипеда равны x и 2x, а диагональ равна 3x.
По теореме Пифагора диагональ основания (оно является прямоугольником со сторонами x и 2x) равна √x²+4x²=x√5.
Теперь рассмотрим диагональное сечение параллелепипеда - прямоугольник, две стороны которого - боковые рёбра, а ещё две - диагонали противоположных граней. Нам известно, что диагональ параллелепипеда, которая будет диагональю этого сечения, равна 3x, одна из сторон - диагональ основания, равная x√5, а вторая сторона - боковое ребро, равное 4. Пользуясь теоремой Пифагора, составим уравнение, из которого найдём x.
9x²=5x²+16 (диагональ - гипотенуза прямоугольного треугольника, диагональ основания и боковое ребро - его катеты).
4x²=16 ⇒ x=2.
Объём прямоугольного параллелепипеда - произведение трёх его рёбер, одно из которых равно 4, второе x=2, а третье 2x=4. Таким образом, V=4*4*2=32.