Теорема (Соотношение между сторонами и углами треугольника) . В произвольном треугольнике против большей стороны лежит больший угол.
Доказательство. Пусть в треугольнике АВС сторона АВ больше стороны АС. Докажем, что угол С больше угла В. Для этого отложим на луче АВ отрезокAD, равный стороне АС. Треугольник АСD - равнобедренный. Следовательно, Ð1 = Ð2. Угол 1 составляет часть угла С. Поэтому Ð1 < ÐC. С другой стороны, угол 2 является внешним углом треугольника ВСD. Поэтому Ð2 > ÐB. Следовательно, имеем ÐC > Ð1 = Ð2 > ÐB.
Следствие: В произвольном треугольнике против большего угла лежит большая сторона.
<span>Докажем, что если в треугольнике АВС угол С больше угла В, то и сторона АВ больше стороны АС. Действительно, эти стороны не могут быть равны, так как в этом случае треугольник АВС был бы равнобедренным и, следовательно, угол С равнялся бы углу В. Сторона АВ не может быть меньше стороны АС, так как в этом случае, по доказанному, угол С был бы меньше угла В. Остается только, что сторона АВ больше стороны АС. </span>
Центр описанной окружности совпадает с серединой гипотенузы.
находим гипотенузу
AC=1/2AB
AB=2AC
AB=25см
диаметр 25 см
Трапецию можно поделить на 2 треугольника. Ищем их площади. S=1/2*a*h.
S1=(8*3)/2=12, S2=(8*6)/2=24. S= S1+S2= 24+12=36
1) Углы AOD<span> и </span>DOB<span> — смежные, вместе составляют развёрнутый угол, следовательно, ∠</span>AOD = 180° − ∠DOB<span> = 180° − 64° = 116°.
2) Поскольку </span>OK<span> - биссектриса угла </span>AOD, то
∠AOK = ∠DOK = ∠AOD<span>/2 = 116°/2 = 58°.</span>