Соединим точку О с точками А, В, С .
Получим два треугольника ОАВ и ОВС. Они равнобедренные оба, т.к. стороны ОА, ОВ, ОС являются радиусами окружности.
Рассмотрим треугольник ОАВ, раз в нем угол ОАВ равен 43 градусам, то угол АВО тоже будет равен 43 градусам, как углы при основании равнобедренного треугольника.
Определим угол ОВС в треугольнике другом. Раз угол АВС равен 75градусам из условия задачи, то угол ОВС будет равен 75-43=32 градуса. А искомый угол ВСО будет равен углу ОВС как угол при основании равнобедренного треугольника ., т.е .искомый угол ВСО=ОВС=32 градуса.
<span>Ответ: угол ВСО=32 градуса</span>
Внешний угол равен сумме двух внутренних углов не смежных с ним значит внешний угол равен 38+76=114
<NEP=<EPK (накрест лежащие углы при параллельных прямых MN и PK и секущей PE)
ΔENP-равнобедренный, так как по условию NP=NE⇒<NEP=<NPE=20°
<NPK=20°+20°=40°
<K=180°-40°=140° , так как сумма односторонних углов при параллельных прямых равна 180°
Ответ: <К=140°