Ответ:
Р= 64 см - периметр осевого сечения конуса
Объяснение:
рассмтрим прямоугольный треугольник:
катет h(h>0) - высота конуса
гипотенуза (h+1) - образующая конуса
катет R=7 см - радиус основания конуса
теорема Пифагора:
(h+1)^2=h^2+R^2
h^2+2h+1=h^2+49
2h=48
h=24 см
d=2R - диаметр основания конус
d=14см
сечение конуса - равнобедренный треугольник, стороны которого равны:
а=b=25 см (h+1=24+2) - образующие конуса
c=14 см (d=14) - диаметр основания конуса.
периметр:
Р=25+25+14=64
2(x-16)-28=36
2x-32-28=36
2x=96
x=48
По признаку параллельности односторонние углы должны иметь в сумме 180 гр. Тогда
х+у=180; х=180-у. подставляем в х-у=120
180-у-у=120
2у=60
у=30, тогда х=120+30=150
т. к. углы равны 90°, то они параллельны
т. к. в параллельных углах сумма внутренних односторонних равна 180°
то угол abd=180°-117°=63