АВ = 6 см, АС = 8 см, ВС = 10 см.
Заметим, что сумма квадратов двух сторон равна квадрату третьей стороне, т.е. 36 + 64 = 100, значит тр-ник АВС прямоугольный, ВС - гипотенуза.
Мы имеем пирамиду, боковые грани которой - равнобедренные тр-ки с боковыми сторонами МВ = МА = МС = 15 см.
МО - расстояние от точки М до плоскости тр-ка, т.е. перпендикуляр.
Прямоугольные тр-ки МОА = МОВ = МОС по гипотенузе (АМ = ВМ = СМ) и катету ОМ (он у них общий). Из равности этих тр-ков следует равность сторон ОА = ОВ = ОС. Значит О - центр окружности, описанной около тр-ка АВС. Тогда гипотенуза ВС является диаметром окружности, значит радиусы ОА = ОВ = ОС = 10 : 2 = 5 (см) как половина диаметра.
Из любого прямоугольного тр-ка с вершиной в точке М вычислим по теореме пифагора расстояние от точки М до плоскости тр-ка АВС:
МО = √(225 - 25) = √200 = 10√2 (см)
Ответ: 10√2 см
28 и 20 см.
Необязательно решение по каким-либо формулам, достаточно добавить немного логики) Рада помочь
AB^2=AC^2+BC^2-2×AC×BC×cosC=(2√3)^2+6^2-2*2√3×6×√3/2=48-12×3=48-36=12 см
AB=12 см
Прикрепляю листочек .................................