Нисколько.
7 + 11 < 19.
Касание происходит если расстояние между центрами равно сумме радиусов. Ну, а если сумма радиусов БОЛЬШЕ расстояние между центрами, то есть 2 общих точки.
Очень похоже на неравество треугольника.
FO=OK - по условию. B1O=OC - по свойству параллелепипеда (точка пересечения диагонали с линией, вышедшей из ребра параллелепипеда делит диагональ пополам) угол СОК= углу В1ОF - как вертикальные. Соответственно, треугольник B1FO=треугольнику OCK - по двум равным сторонам и углу между ними. Что и требовалось доказать.
Сравним длины сторон:
NP = <span>√</span>[(7-6)^2 + (4-1)^2] = <span>√</span>(1+9) = <span>√</span>10
MQ = <span>√</span>[(2-1)^2 + (4-1)^2] = <span>√</span>(1+9) = <span>√</span>10
MN = <span>√</span>[(6-1)^2 + (1-1)^2] = 5
PQ = <span>√</span>[(7-2)^2 + (4-4)^2] = 5
MNPQ - параллелограмм, т.к. его противоположные стороны попарно равны.
NQ = <span>√</span>[(6-2)^2 + (1-4)^2] = <span>√</span>(16+9) = 5
MP = <span>√</span>[(7-1)^2 + (4-1)^2] = <span>√</span>(36+9) = <span>√</span>45 = 3*<span>√</span>5
Линейным углом двугранного угла называется угол, образованный лучами с вершиной на ребре, и при этом лучи лежат на гранях двугранного угла и перпендикулярны ребру.
В ∆ АВС опустим высоту АЕ перпендикулярно BC, тогда
DA перпендикулярен ( ABC )
AE принадлежит ( АВС )
Значит, DA перпендикулярен AE
AE перпендикулярен ВС
Тогда по теореме о трёх перпендикулярах DE перпендикулярен ВС
Из этого следует, что угол AED – линейный угол двугранного угла ABCD.
Рассмотрим ∆ АВС:
Высота равностороннего треугольника вычисляется по формуле:
h = a√3 / 2
где а – сторона равностороннего треугольника, h – высота
AE = AB × √3 / 2 = 6 × √3 / 2 = 3√3
Рассмотрим ∆ AED (угол DAE = 90°):
tg AED = AD / AE = 4 / 3√3 = 4√3 / 9
ОТВЕТ: 4√3 / 9
DD1=AB=6. Тогда sin DCB = DD1/DC. DC=DD1/sin DCB=6/( sqrt2 /2) = 6 (sqrt2)
DD1^2 + D1C^2 = DC^2 по теореме Пифагора.
D1C^2 = DC^2-DD1^2= 72-36 = 36
D1C=6.
BC=BD1+D1C=6+6=12
Ответ : 6(sqrt2) , 12