Так как ВК-биссектриса он делит <В на равные углы.
<СВК=<КВА=16°(потому что 180-(90+74)=16)
<А=180-(<В+<С)=180-(90+32)=58°
Косинус острого угла прямоугольного треугольника равен отношению прилежащего катета к гипотенузе. Из точки В опускаем перпендикуляр на луч ОА и ставим точку М.
Теперь у нас есть прямоугольный треугольник. Считаем его катеты по клеточкам. Большой 4 единицы, маленький 2 единицы. Можно, конечно теперь найти тангенс угла, который равен отношению противолежащего катета к прилежащему катету, но там тангенс не нужен, потом из него косинус долго выражать. Найдем гипотенузу по теореме Пифагора:
с^2=2^2+4^2=20
c=√20
cosBOA=2/√20=2/2√5=1/√5
Пусть в одной части х см.
Отношение 2:7 можно записать как 2х:7х.
По свойству касательной к окружности, проведенной из одной точки, отрезки касательных равны ( см. рисунок).
Поэтому боковые стороны имеют длину 2х+7х=9х
основание 2х+2х=4х
9х+9х+4х=110
22х=110
х=5
9·5=45 см –боковая сторона
<span>4·5=20 см – основание</span>
Трапеция АВСД, МН-средняя линия, АС-диагональ, О-пересечение МН и АС, ВС=38, АД=55, треугольник АВС, МО-средняя линия треугольника=1/2ВС=38/2=19, ОН-средняя линия треугольника АСД=1/2АД=55/2=27,5, МО-меньший отрезок