угол ВМD=90°, так как угол ВМА=180°, а угол DМА=90°. Значит СВМD прямоугольник
ВМ=14, так как ВМ=СD по свойству прямоугольника по выше доказоному
Значит МА=25-14=11. Тогда угол МАD=180°-90°-45°=45°. Значит треугольник МАD - равнобедренный, а так же прямоугольный, так как угол MAD=90°.
Следовательно MD=11
Найдём S:
S=(14+25):2*11=19.5*11=214.5
Ответ: S=214.5
Это легко:
если цилиндр равносторонний то диаметр оснований цилиндра равен 10 как и его высота. значит радиус равен 5.
S боковой поверхности= 2*pi*R*H=2*pi*5*10=100pi
Описанный четырёхугольник – это четырехугольник, имеющий вписанную
окружность. Для того, чтобы четырёхугольник был описанным, необходимо и
достаточно, чтобы он был выпуклым и имел равные суммы противоположных
сторон: a + c = b + d.
Решение:
14+14=28 (см)
Радиус вписанной окружности: r = S/p,
Радиус описанной окружности: R = abc/4S,
где S - площадь треугольника, р - полупериметр
Площадь треугольника можно вычислить по формуле Герона:
S= √p(p-a)(p-b)(p-c), где р - полупериметр
р = (18 + 15 + 15)/2 = 24 см
S = √24(24-18)(24-15)(24-15) = 108 cм²
Радиус вписанной окружности: r = 108/24 = 4,5 см,
Радиус описанной окружности: R = (18 * 15 * 15)/(4*108)= 9,375 см
1) DEF = 60, по св-ву углов при секущей прямой.
2) DF // CB, FE - секущая, => FE не перпендикулярно AB => пересекается с AB
как-то так