В основании правильной четырехугольной пирамиды квадрат, высота проецируется в точку пересечения его диагоналей.
Пусть К - середина МА.
1. Построение сечения.
В плоскости (АМС) соединим точки К и С. КС∩МО = Т.
В плоскости (DMB) через точку Т проведем прямую, параллельную BD. Точки L и H - точки пересечения этой прямой с ребрами MB и MD соответственно.
KLCH - искомое сечение (Точки С и К лежат в плоскости сечения, HL║BD, значит и сечение параллельно BD).
2.
BD⊥AC как диагонали квадрата
BD⊥MO, т.к. МО высота пирамиды, ⇒ BD⊥(AMC)
KC⊂(AMC) ⇒ BD⊥KC ⇒ HL⊥KC
В четырехугольнике KLCH диагонали перпендикулярны, поэтому его площадь можно найти как половину произведения диагоналей.
AC = 6√2 как диагональ квадрата.
Из ΔАМС по теореме косинусов
cosA = (AM² + AC² - MC²)/(2AM·AC)
Из ΔАКС по теореме косинусов
cosA = (AK² + AC² - KC²)/(2AK·AC)
Приравняем:
(AM² + AC² - MC²)/(2AM·AC) = (AK² + AC² - KC²)/(2AK·AC)
(144 + 72 - 144)/(2·12·6√2) = (36 + 72 - KC²)/(2·6·6√2)
72/2 = 108 - KC²
KC² = 72
KC = 6√2
В ΔАМС точка Т - точка пересечения медиан. Значит,
МТ:ТО = 2:1, и МТ:МО = 2:3
ΔHML подобен ΔDMB по двум углам (угол при вершине М общий, ∠MHL = ∠MDB как соответственные при пересечении HL║BD секущей MD) ⇒
HL:DB = МТ:МО = 2:3
HL = BD·2/3 = 6√2 · 2/3 = 4√2
Sklch = KC·HL/2 = 6√2·4√2/2 = 24
Ответ:37
Объяснение:
Средняя линия трапеции :( а+в)/2 ." а" верхнее основание;" в" -нижнее.
25=(13+в)/2.
50=13+в;
в=50-13=37 .
В угол В=30град, тогда угол А=60град. АА1-бис., делит угол А пополам. угол САА1=30град. СА1 -катет
А1 напротив угла 30град равен половине АА1: 20/2=10см
С А
Площадь треугольника равна половине произведения его сторон на синус угла между ними.
S = (AC * AB * sinA) : 2
S = (12 * 20 * 1/2) : 2 = (12 * 10) : 2 = 60 см²
Ответ: S = 60 см²
1.тогда угол ВАД равен 180°-135°=45°, т.к. углы, прилежащие к одной стороне АВ параллелограмма в сумме составляют 180°
Площадь равна АВ*АД*sin∠ВАД=42*16*sin45°=42*16*√2/2=336√2/см²/
2. сторона правильного треугольника, через радиус круга, вписанного в него вычисляется по формуле а=2r*tg(180°/3), значит, радиус равен 12/(2tg60°)=6/√3=2√3, и тогда площадь круга равна πr²=(2√3)²π=12π
3. Против угла в 30° лежит катет,/ т.е. высота трапеции, или же меньшая боковая сторона / равный половине гипотенузы, т.е. большей боковой стороны. Отсюда , большую если бок. сторону обозначить х, то меньшая бок. сторона равна 0,5х, а их сумма равна 36, значит, х =36/1,5=24/см/. Итак, высота равна 12 см, т.е. половине от 24см. Площадь ищем, как полусумму оснований, умноженную на высоту. Нижнее основание равно 8√3+√24²-12²=8√3+12√3=20√3. Тогда площадь равна (8√3+20√3)*12/2=168√3/см квадратных/