а)если сумма соответственных равна 120 градусов,градусная мера каждого из них равна 120:2=60 градусов т.к. они равны.Градусная мера смежных с этими углами соответственных углов равна 180-60=120 градусов у каждого
Плоскости α и β составляют угол =120°: α^β =120° ; [AB] ∈ α⋂β; AB =6√2 ;
Проведем AE ⊥BA ( E ∈α) ,AE=f3 ; AF⊥BA ( F ∈β) , AF=5.
||∠EAF -линейный угол двугранного угла . ||.
BM ⊥AB ( M ∈α) ,BM=3 ; BN⊥AB ( N ∈β) , BN=5.
------- * * * -------
FM -? ( EN _?)
BA ⊥ AE и BA ⊥ AF ⇒ BA ⊥ плоскости EAF.
Четырехугольник EABM - прямоугольник , ME =[AB] =6√2 и ME | | BA ⇒ ME⊥(EAF) , следовательно ME ⊥ EF.
Из ΔMEF:
MF =√(ME² +EF²) =√(6√2² +EF²);
MF =√(72+EF²) .
Но из ΔEAF по теореме косинусов :EF² =AE²+ AF² - 2*AE*AF*cos(∠EAF) ;
EF² =3²+ 5² - 2*3*5cos120° =9+25 - 2*3*5*(-1/2) =49. ||<em> EF=7</em> ||
Наконец: MF =√(72 +BD²) =√(72 +49)=√121 =11.
ответ: NM =11.
---------
Удачи !
К сожалению средства не позволяет показать рисунок
Ответ:
4500π см³
Объяснение:
Радиус сечения равен √81 = 9 см.
Радиус шара равен √12² + 9² = √225 = 15 см.
Объём шара равен 4/3π*15³ = 4500π см³
Во-первых,углы 1 и 2 равны,как накрестлежащие, во-вторых у тебя даны 2 равных катета. ВС-общая. Из этого можно сделать вывод,что АВ=СД и следовательно,по трем сторонам треугольники равны.
В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 1. Найдите площадь четырёхугольника ABMN.