Помогите пожалуйста решить: Диагональное сечение правильной четырёхугольной пирамиды-равнобедренный прямоугольный треугольник, катет которого равен "а". Найдите объём и площадь полной поверхности.
Если диагональное сечение правильной четырёхугольной пирамиды-равнобедренный прямоугольный треугольник, катет которого равен "а", то основание (гипотенуза) этого треугольника - диагональ квадрата основания пирамиды равно а√2. Высота пирамиды - это высота <span>равнобедренного прямоугольного треугольника, она равна половине его гипотенузы и равна H = а</span>√2/2 = а/√2.
Так как гипотенуза основания пирамиды - диагональ квадрата, то сторона его равна а√2/√2 = а. Это означает, что все рёбра пирамиды равны а, боковые грани - равносторонние треугольники.
Отсюда площадь основания So = a², периметр основания Р = 4а. Находим апофему боковой грани: А = а*cos30 = a√3/2.
Площадь боковой поверхности пирамиды: Sбок = (1/2)А*Р = (1/2)*(а√3/2)*4а = а²√3.
Объём пирамиды V=(1/3)So*H = (1/3)*a²*(<span> а/√2) = </span>= a³/3√2.