5x²+9x+4+a=0
D=9²-4*5*(4+a)=81-80-20a=0
1-20a=0
20a=1
a=1/20
а=0,05
X^4 + x^3 - 18x^2 + ax + b = 0
Если корень уравнения рациональный x = m/n, то m - делитель свободного члена, n - делитель старшего коэффициента.
Если корень целый, то это просто делитель свободного члена b.
В данном случае старший коэффициент равен 1, поэтому все рациональные корни будут целыми.
Рассмотрим два случая.
1) Число b - простое. Тогда возможные корни: 1; -1; b; -b.
Подставляем эти корни:
x = 1: 1 + 1 - 18 + a + b = 0; a = 16 - b
x = -1: 1 - 1 - 18 - a + b = 0; a = b - 18
x = b; b^4 + b^3 - 18b^2 + a*b + b = 0; a = -b^3 - b^2 + 18b - 1
Чтобы найти а, мы разделили всё уравнение на b.
Дальше будет тоже самое.
x = -b; b^4 - b^3 - 18b^2 - a*b + b = 0; a = b^3 - b^2 - 18b + 1
2) Число b - составное, например, b = p*r.
Тогда, кроме корней 1, -1, b, -b будут еще корни p, -p, r, -r.
x = p: p^4 + p^3 - 18p^2 + a*p + p*r = 0; a = -p^3 - p^2 + 18p - r
x = -p; p^4 - p^3 - 18p^2 - a*p + p*r = 0; a = p^3 - p^2 - 18p + r
x = r: r^4 + r^3 - 18r^2 + a*r + p*r = 0; a = -r^3 - r^2 + 18r - p
x = -r: r^4 - r^3 - 18r^2 - a*r + p*r = 0; a = r^3 - r^2 - 18r + p
Если у составного числа b больше делителей, например, b = k*p*r*s, то
будет тоже самое. Например, при x = k*r будет:
x = kr: (kr)^4 + (kr)^3 - 18(kr)^2 + a*kr + kr*ps = 0; a = -(kr)^3 - (kr)^2 + 18kr - ps
Пусть m/n — это рациональное число, где m — целое, а n — натуральное, причём дробь m/n несократима.
Тогда можем записать:
m*m=23*n*n
Видим, что m² кратно 23. Но так как 23 — простое число, то в разложении на простые множители числа m должно быть число 23, то есть m кратно 23. Значит, m = 23·k, где k — целое число.
Перепишем:
23·k·23·k = 23·n·n
23·k² = n²
Аналогично рассуждая получаем, что n кратно 23. Однако в таком случае дробь m/n сократима на число 23. Противоречие.
Квадрат рационального числа не может быть равен 23, ч. т. д.
По идеи тут везде два
можно посмотреть дискриминант
если D>o ,то два корня
если D=o ,то один корнь
если D