S(трап) = 1/2(осн1 + осн 2) * высота; основания есть, высоту надо найти.
Предлагаю, обозначения
АВСД - данная трапеция, (рисуем картину),
АВ=13 см
СД=15 см
ВС=5 см,
АД=19 см
S(ABCD)-?
Решение
Пусть х см = отрезок АН, ( ВН - высота, опущенная из вершины В трапеции); тогда (19-5-х) = 14-х см = РД ( СР высота, опущенная из вершины С).
Так как треугольник АВН ( уг Н=90*) и тр ДСР (уг Р=90*) прямоугольные и высоты в трапеции равны, то выразим высоту трапеции (ВН =СР) по теореме Пифагора из двух указанных треугольников, получаем уравнение:
169-х^2=225-(14-x)^2
169-x2=225-196+28x-x2
28x = 140
x=5 сторона АН треуг АВН
По т Пифагора к тр АВН найдем ВН, получаем:
ВН=√(169-25) = √144 = 12 см - высота трапеции
S(ABCD)= 1/2 * (BC+AD) * BH
S(ABCD) = 1/2 * 24 * 12 = 12*12 =144
По свойству биссектрис точка О находится на одинаковом расстоянии от всех сторон треугольника.
Поэтому расстояние от точки О до стороны <span>NK равно 6 см.
Отсюда площадь </span><span>треугольника NOK равна (1/2)*6*10 = 30 см</span>².
Ответ:
Сначало сможем найти площадь большого квадрата, длиной которого является (a-f) + b + c. Ширина этого же квадрата равна f + l, следовательно S-1 = ((a-f)+b+c) * (f+l).
Находим площадь маленьго прямоугольник слева, его длина – l, ширина – f, следовательно S-2 = l * f
(2 – индекс, пишется как степень, только снизу)
При нахождении площади треугольника, зная только 2 стороны, легче будет найти площадь прямоугольник или квадрата (зависит от треугольника) и разделить на два:
S-3 = b * d : 2
Для нахождения площади всей фигуры мы просто сладиваем все площади и получаем:
Действуем по формуле:
S = S-1 + S-2 + S-3
S = (((a-f)+b+c)*(f+l))) + (l * f) + (b*d:2)
1) 4*8 = 32 см²
2) по т. Пифагора 100-64=36 , значит вторая смежная равна 6 см. Отсюда S= 8*6=48 см²
3)P=a+2a+a+2a=12 -> 6a=12 -> a=2 , 2a=4
S= 4*2=8 см²
Обозначим L - длина дуги, α - градусная мера дуги, R - радиус окружности.
L = πR · α / 180°
πR · α = L · 180°
R = L · 180° / (π·α)