Рассмотрим треугольники ABC и ADC: AB=AD, BC=DC(по условию), AC-общая сторона, значит треугольники равны по третьему признаку равенства. Т.к. равны треугольники, то равны и соответствующие элементы: угол BAC= углу DAC, следует, что AC-биссектриса угла BAD
У правильного треугольника стороны равны, внутренние углы его равны 60°, а высота является и медианой и биссектрисой.
Именно поэтому центр описанной окружности и центр вписанной окружности для этого треугольника совпадают, так как для первого - это пересечение биссектрис треугольника, а для второго - пересечение серединных перпендикуляров.
Рассмотрим треугольник АОН. Это прямоугольный треугольник с <АOH=90° и <OAH=30° (АО - биссектриса <ВАС).
Тогда АО=2*ОН, так как катет ОН лежит против угла 30°.
Но ОН - это радиус вписанной окружности, а АО - радиус описанной окружности. Значит R=2r. R=8см (дано). r=4см.
АН - это половина стороны треугольника и по Пифагору равна
АН=√(R²-r²) = √(8²-4²) = 4√3см.
Тогда сторона треугольника равна 8√3см, а его периметр равен
Р=3*8√3 =24√3см.
Ответ: r=4см, Р=24√3см.
<span>Не соответствует 4. годовая амплитуда температур 20 градусов </span>
<span>Можно самостоятельно было раскинуть мозгом: если утверждение "средняя температура июля +25-28 градусов" вполне справедливо для тропиков, то температура зимой +5-8 градусов - это перебор для тропиков же.</span>